Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import functools | |
| try: | |
| from .arch_util import EBlock | |
| from .arch_util_freq import EBlock_freq | |
| except: | |
| from arch_util import EBlock | |
| from arch_util_freq import EBlock_freq | |
| class Network(nn.Module): | |
| def __init__(self, img_channel=3, | |
| width=16, | |
| middle_blk_num_enc=1, | |
| middle_blk_num_dec=1, | |
| enc_blk_nums=[], | |
| dec_blk_nums=[], | |
| dilations = [1], | |
| extra_depth_wise = False, | |
| ksize = 5): | |
| super(Network, self).__init__() | |
| self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, | |
| bias=True) | |
| self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, | |
| bias=True) | |
| self.encoders = nn.ModuleList() | |
| self.decoders = nn.ModuleList() | |
| self.middle_blks = nn.ModuleList() | |
| self.ups = nn.ModuleList() | |
| self.downs = nn.ModuleList() | |
| chan = width | |
| for num in enc_blk_nums: | |
| self.encoders.append( | |
| nn.Sequential( | |
| *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)] | |
| ) | |
| ) | |
| self.downs.append( | |
| nn.Conv2d(chan, 2*chan, 2, 2) | |
| ) | |
| chan = chan * 2 | |
| self.middle_blks_enc = \ | |
| nn.Sequential( | |
| *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)] | |
| ) | |
| self.middle_blks_dec = \ | |
| nn.Sequential( | |
| *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)] | |
| ) | |
| for num in dec_blk_nums: | |
| self.ups.append( | |
| nn.Sequential( | |
| nn.Conv2d(chan, chan * 2, 1, bias=False), | |
| nn.PixelShuffle(2) | |
| ) | |
| ) | |
| chan = chan // 2 | |
| self.decoders.append( | |
| nn.Sequential( | |
| *[EBlock(chan,dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)] | |
| ) | |
| ) | |
| self.padder_size = 2 ** len(self.encoders) | |
| # self.facs = nn.ModuleList([nn.Identity(), nn.Identity(), | |
| # nn.Identity(), | |
| # nn.Identity()) | |
| # self.kconv_deblur = KernelConv2D(ksize=ksize, act = True) | |
| def forward(self, input): | |
| _, _, H, W = input.shape | |
| input = self.check_image_size(input) | |
| x = self.intro(input) | |
| # encs = [] | |
| facs = [] | |
| # i = 0 | |
| for encoder, down in zip(self.encoders, self.downs): | |
| x = encoder(x) | |
| # x_fac = fac(x) | |
| facs.append(x) | |
| # print(i, x.shape) | |
| # encs.append(x) | |
| x = down(x) | |
| # i += 1 | |
| # we apply the encoder transforms | |
| x_light = self.middle_blks_enc(x) | |
| # calculate the fac at this level | |
| # x_fac = self.facs[-1](x) | |
| # facs.append(x_fac) | |
| # apply the decoder transforms | |
| x = self.middle_blks_dec(x_light) | |
| # apply the fac transform over this step | |
| x = x + x_light | |
| # print('3', x.shape) | |
| # apply the mask | |
| # x = x * mask | |
| # x = self.recon_trunk_light(x) | |
| i = 0 | |
| for decoder, up, fac_skip in zip(self.decoders, self.ups, facs[::-1]): | |
| x = up(x) | |
| if i == 2: # in the toppest decoder step | |
| x = x + fac_skip | |
| x = decoder(x) | |
| else: | |
| x = x + fac_skip | |
| x = decoder(x) | |
| i+=1 | |
| x = self.ending(x) | |
| x = x + input | |
| return x[:, :, :H, :W] | |
| def check_image_size(self, x): | |
| _, _, h, w = x.size() | |
| mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size | |
| mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size | |
| x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0) | |
| return x | |
| if __name__ == '__main__': | |
| img_channel = 3 | |
| width = 32 | |
| # enc_blks = [1, 1, 1, 3] | |
| # middle_blk_num = 3 | |
| # dec_blks = [2, 1, 1, 1] | |
| enc_blks = [1, 2, 3] | |
| middle_blk_num_enc = 2 | |
| middle_blk_num_dec = 2 | |
| dec_blks = [3, 1, 1] | |
| residual_layers = None | |
| dilations = [1, 4, 9] | |
| extra_depth_wise = True | |
| ksize = 5 | |
| net = Network(img_channel=img_channel, | |
| width=width, | |
| middle_blk_num_enc=middle_blk_num_enc, | |
| middle_blk_num_dec= middle_blk_num_dec, | |
| enc_blk_nums=enc_blks, | |
| dec_blk_nums=dec_blks, | |
| dilations = dilations, | |
| extra_depth_wise = extra_depth_wise, | |
| ksize = ksize) | |
| # NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, | |
| # enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) | |
| inp_shape = (3, 256, 256) | |
| from ptflops import get_model_complexity_info | |
| macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) | |
| print(macs, params) | |
| inp = torch.randn(1, 3, 256, 256) | |
| out = net(inp) | |