File size: 9,200 Bytes
fbbdeab 4275667 fbbdeab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
"""
Gradio Web UI for Fish Disease Detection
Enhanced with Gemini-powered treatment and Grad-CAM explainability
"""
# Load environment variables from .env file (for local development)
try:
from dotenv import load_dotenv
load_dotenv()
print("β
Environment variables loaded from .env")
except ImportError:
print("β οΈ python-dotenv not installed (OK for production deployment)")
import gradio as gr
import google.generativeai as genai
from PIL import Image
from backend import config as cfg
from backend.predictor import FishDiseasePredictor
from backend.treatment import TreatmentGenerator
from backend.gradcam import generate_gradcam_visualization
# ==================== GEMINI SETUP FOR TREATMENT ====================
treatment_gemini_model = None
if cfg.GEMINI_API_KEY:
try:
genai.configure(api_key=cfg.GEMINI_API_KEY)
treatment_gemini_model = genai.GenerativeModel(cfg.GEMINI_MODEL_NAME)
print("β
Gemini AI enabled for treatment recommendations")
except Exception as e:
print(f"β Gemini setup failed: {e}")
treatment_gemini_model = None
else:
print("β οΈ Gemini API key not found. Treatment recommendations will be limited.")
# Initialize treatment generator
treatment_generator = TreatmentGenerator(treatment_gemini_model)
# Initialize predictor
config_dict = {
'CLASSES': cfg.CLASSES,
'MODEL_PATH': cfg.MODEL_PATH,
'DEVICE': cfg.DEVICE,
'CONFIDENCE_THRESHOLD': cfg.CONFIDENCE_THRESHOLD,
'MAX_FILE_SIZE_MB': cfg.MAX_FILE_SIZE_MB,
'MIN_IMAGE_SIZE_PX': cfg.MIN_IMAGE_SIZE_PX,
'VALID_EXTENSIONS': cfg.VALID_EXTENSIONS
}
predictor = FishDiseasePredictor(config_dict, gemini_model=None)
def predict_fish_disease(image):
"""
Main prediction function with Grad-CAM visualization
Args:
image: PIL Image from Gradio
Returns:
tuple: (result_text, probability_chart, treatment_text, gradcam_image)
"""
if image is None:
return "β οΈ Please upload an image", None, "", None
# Run prediction
result = predictor.predict_from_image(image)
if not result['success']:
return f"β {result['error']}", None, "", None
pred = result['prediction']
disease = pred['disease'].replace('_', ' ')
confidence = pred['confidence']
display_confidence = min(confidence, 100.0)
# Get sorted probabilities
sorted_probs = sorted(pred['probabilities'].items(), key=lambda x: x[1], reverse=True)
# GENERATE GRAD-CAM VISUALIZATION
gradcam_image = None
try:
predicted_class_idx = cfg.CLASSES.index(pred['disease'])
model = predictor.model_loader.model
transform = predictor.model_loader.transform
gradcam_image = generate_gradcam_visualization(
model, image, predicted_class_idx, transform
)
except Exception as e:
print(f"β οΈ Grad-CAM generation failed: {e}")
gradcam_image = image # Fallback to original
# ENHANCED: Better handling for low confidence cases
if pred['below_threshold']:
result_text = f"""
## π Prediction Results
**Status:** β **Uncertain - Low Confidence Detection**
β οΈ **Below confidence threshold ({cfg.CONFIDENCE_THRESHOLD}%)**
The model detected possible disease signs but cannot confidently identify the specific disease.
### π Most Likely Candidates:
1. **{sorted_probs[0][0].replace('_', ' ')}**: {sorted_probs[0][1]:.1f}%
2. **{sorted_probs[1][0].replace('_', ' ')}**: {sorted_probs[1][1]:.1f}%
3. **{sorted_probs[2][0].replace('_', ' ')}**: {sorted_probs[2][1]:.1f}%
### π‘ Recommended Actions:
- Upload a **clearer, well-lit** image if available
- Capture the fish from **different angles**
- **Consult a fish health professional** for accurate diagnosis
- **Monitor the fish** closely for symptom changes
"""
ai_treatment = treatment_generator.get_recommendations(pred['disease'], display_confidence)
treatment_text = f"""### β οΈ Low Confidence Warning ({display_confidence:.1f}%)
Due to uncertain diagnosis, these are **general guidelines** for the top candidate:
---
{ai_treatment}
---
### π΄ CRITICAL REMINDER:
This diagnosis has **low confidence** and should **NOT** be used for treatment decisions without professional confirmation.
**Next Steps:**
1. Get a professional veterinary assessment
2. Document symptoms with photos/video
3. Monitor water quality parameters
4. Isolate affected fish if condition worsens"""
else:
status_emoji = "β
" if pred['disease'] == 'Healthy_Fish' else "β οΈ"
status_text = "Healthy" if pred['disease'] == 'Healthy_Fish' else "Diseased"
result_text = f"""
## π Prediction Results
**Disease:** {disease}
**Confidence:** {display_confidence:.2f}%
**Status:** {status_emoji} {status_text}
{"β
High confidence detection - Results are reliable" if confidence >= 80 else ""}
"""
treatment_text = treatment_generator.get_recommendations(pred['disease'], display_confidence)
# Convert probabilities for Gradio
prob_data = {
disease_name: prob / 100.0
for disease_name, prob in pred['probabilities'].items()
}
return result_text, prob_data, treatment_text, gradcam_image
# ==================== GRADIO INTERFACE ====================
with gr.Blocks(title="Fish Disease Detection", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Fish Disease Detection System
### AI-Powered Fish Health Diagnosis using VGG16 CNN with Explainable AI
Upload a fish image to detect diseases and see **how the AI made its decision** with heatmap visualization.
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Fish Image", height=400)
predict_btn = gr.Button("π¬ Analyze Fish", variant="primary", size="lg")
gr.Markdown("""
### π Instructions:
1. Upload a **clear fish image**
2. Click **'Analyze Fish'**
3. View **results, AI explanation, and treatment**
**Supported:** JPG, PNG (Max 10MB)
### π‘ Tips for Best Results:
- Use **well-lit** images
- Show the **whole fish** clearly
- Avoid **blurry** or **obstructed** shots
""")
with gr.Column(scale=1):
result_output = gr.Markdown(label="Results")
prob_output = gr.Label(label="Disease Probabilities", num_top_classes=8)
# Grad-CAM Visualization Row
with gr.Row():
gradcam_output = gr.Image(
label="π AI Decision Heatmap - Shows which areas the model focused on for diagnosis (Red = High importance)",
type="pil",
height=400
)
with gr.Row():
treatment_output = gr.Textbox(
label="π Treatment Recommendations",
lines=15,
max_lines=25
)
# Example images
gr.Examples(
examples=[
["data/merged_dataset-all/test/Healthy_Fish/Healthy_Fish_1__1.jpg"],
["data/merged_dataset-all/test/Bacterial_gill_disease/Bacterial_gill_disease_1__1.jpg"],
],
inputs=image_input,
label="πΈ Example Images"
)
gr.Markdown("""
---
### π Model Information
- **Architecture:** VGG16 CNN with Transfer Learning
- **Test Accuracy:** 98.65%
- **Training Dataset:** 5,000+ annotated images
- **Disease Classes:** 8 diseases + Healthy
- **Confidence Threshold:** 70% (for reliable diagnosis)
- **Inference Time:** ~2-3 seconds
- **AI Treatment:** Powered by Google Gemini 2.0
- **Explainability:** Grad-CAM visualization
### π― Confidence Levels:
- **β₯ 80%**: High confidence - Very reliable
- **70-79%**: Good confidence - Reliable
- **< 70%**: Low confidence - Requires verification
### π¬ Understanding the Heatmap:
- **π΄ Red areas**: Model focused here (disease symptoms, lesions, abnormalities)
- **π‘ Yellow areas**: Moderate importance
- **π’ Green/Blue areas**: Less important for diagnosis
The heatmap shows the AI is making decisions based on actual disease features, not random patterns.
---
### β οΈ Medical Disclaimer
This is an **AI diagnostic tool** for preliminary screening only.
**Always consult a qualified aquaculture veterinarian for:**
- Professional diagnosis confirmation
- Treatment plan approval
- Medication dosage recommendations
- Emergency health situations
This tool is intended to **assist**, not **replace** professional veterinary care.
""")
# Connect button with 4 outputs
predict_btn.click(
fn=predict_fish_disease,
inputs=image_input,
outputs=[result_output, prob_output, treatment_output, gradcam_output]
)
# Launch
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860
)
|