Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer, AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
| from huggingface_hub import login | |
| import os | |
| # Use the secret stored in the Hugging Face space | |
| token = os.getenv("HF_TOKEN") | |
| login(token=token) | |
| # Whisper Model Optimization | |
| model = "openai/whisper-tiny" | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| processor = AutoProcessor.from_pretrained(model) | |
| transcriber = pipeline( | |
| "automatic-speech-recognition", | |
| model=model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| device=0 if torch.cuda.is_available() else "cpu", | |
| ) | |
| # Function to Transcribe & Generate Minutes | |
| def process_audio(audio_file): | |
| if audio_file is None: | |
| return "Error: No audio provided!" | |
| # Transcribe audio | |
| transcript = transcriber(audio_file)["text"] | |
| del transcriber | |
| del processor | |
| # LLaMA Model Optimization | |
| LLAMA = "meta-llama/Llama-3.2-3B-Instruct" | |
| llama_quant_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_quant_type="nf4" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(LLAMA) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = AutoModelForCausalLM.from_pretrained( | |
| LLAMA, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto" | |
| ) | |
| # Generate meeting minutes | |
| system_message = "You are an assistant that produces minutes of meetings from transcripts, with summary, key discussion points, takeaways and action items with owners, in markdown." | |
| user_prompt = f"Below is an extract transcript of a Denver council meeting. Please write minutes in markdown, including a summary with attendees, location and date; discussion points; takeaways; and action items with owners.\n{transcript}" | |
| messages = [ | |
| {"role": "system", "content": system_message}, | |
| {"role": "user", "content": user_prompt} | |
| ] | |
| inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(DEVICE) | |
| streamer = TextStreamer(tokenizer) | |
| outputs = model.generate(inputs, max_new_tokens=2000, streamer=streamer) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Gradio Interface | |
| interface = gr.Interface( | |
| fn=process_audio, | |
| inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"), | |
| outputs="text", | |
| title="Meeting Minutes Generator", | |
| description="Upload or record an audio file to get structured meeting minutes in Markdown.", | |
| ) | |
| # Launch App | |
| interface.launch() | |