Upload 19 files
Browse files- app/backend/main.py +665 -0
- app/backend/requirements.txt +9 -0
- app/backend/runtime.txt +1 -0
- app/frontend/.gitignore +24 -0
- app/frontend/eslint.config.js +29 -0
- app/frontend/index.html +13 -0
- app/frontend/package-lock.json +0 -0
- app/frontend/package.json +32 -0
- app/frontend/postcss.config.js +7 -0
- app/frontend/public/vite.svg +1 -0
- app/frontend/src/App.css +42 -0
- app/frontend/src/App.jsx +385 -0
- app/frontend/src/assets/react.svg +1 -0
- app/frontend/src/components/MovieCard.jsx +72 -0
- app/frontend/src/components/MovieCarousel.jsx +95 -0
- app/frontend/src/index.css +2 -0
- app/frontend/src/main.jsx +10 -0
- app/frontend/tailwind.config.js +11 -0
- app/frontend/vite.config.js +16 -0
app/backend/main.py
ADDED
|
@@ -0,0 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Production-Ready FastAPI Backend for DeBERTa Emotion Detection
|
| 3 |
+
Optimized for 710MB model with efficient tokenization and inference
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from fastapi import FastAPI, HTTPException, Request
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from fastapi.responses import JSONResponse
|
| 9 |
+
from pydantic import BaseModel, Field, field_validator
|
| 10 |
+
from contextlib import asynccontextmanager
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
from transformers import DebertaV2Model, DebertaV2Tokenizer
|
| 14 |
+
import uvicorn
|
| 15 |
+
import logging
|
| 16 |
+
import time
|
| 17 |
+
from typing import Dict, List, Optional
|
| 18 |
+
import gc
|
| 19 |
+
import psutil
|
| 20 |
+
import os
|
| 21 |
+
import json
|
| 22 |
+
import httpx
|
| 23 |
+
from dotenv import load_dotenv
|
| 24 |
+
import warnings
|
| 25 |
+
|
| 26 |
+
# Suppress HuggingFace deprecation warning
|
| 27 |
+
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub')
|
| 28 |
+
|
| 29 |
+
# ==================== LOGGING SETUP ====================
|
| 30 |
+
logging.basicConfig(
|
| 31 |
+
level=logging.INFO,
|
| 32 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 33 |
+
)
|
| 34 |
+
logger = logging.getLogger(__name__)
|
| 35 |
+
|
| 36 |
+
# ==================== ENVIRONMENT SETUP ====================
|
| 37 |
+
load_dotenv() # Load from .env file
|
| 38 |
+
TMDB_API_KEY = os.getenv('TMDB_API_KEY', '')
|
| 39 |
+
TMDB_BASE_URL = "https://api.themoviedb.org/3"
|
| 40 |
+
TMDB_IMAGE_BASE_URL = "https://image.tmdb.org/t/p/w500"
|
| 41 |
+
|
| 42 |
+
# ==================== CONFIGURATION ====================
|
| 43 |
+
class Config:
|
| 44 |
+
MODEL_PATH = "./../../models/" # Path to your saved model
|
| 45 |
+
MAX_LENGTH = 128
|
| 46 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 47 |
+
BATCH_SIZE = 8 # For batch predictions
|
| 48 |
+
MAX_TEXT_LENGTH = 5000 # Character limit for input
|
| 49 |
+
|
| 50 |
+
EMOTION_CLASSES = ['anger', 'fear', 'joy', 'love', 'neutral', 'sadness', 'surprise']
|
| 51 |
+
|
| 52 |
+
# Emotion to Genre Mapping (4 genres per emotion)
|
| 53 |
+
EMOTION_GENRE_MAP = {
|
| 54 |
+
'anger': ['Action', 'Crime', 'Thriller', 'Revenge-Drama'],
|
| 55 |
+
'fear': ['Horror', 'Thriller', 'Mystery', 'Supernatural'],
|
| 56 |
+
'joy': ['Comedy', 'Adventure', 'Family', 'Animation', 'Musical'],
|
| 57 |
+
'love': ['Romance', 'Rom-Com', 'Emotional Drama', 'Fantasy'],
|
| 58 |
+
'neutral': ['Documentary', 'Drama', 'Biography', 'Slice-of-Life'],
|
| 59 |
+
'sadness': ['Drama', 'Romance', 'Indie', 'Healing-Stories'],
|
| 60 |
+
'surprise': ['Mystery', 'Sci-Fi', 'Fantasy', 'Twist-Thriller']
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# Performance settings
|
| 64 |
+
TORCH_THREADS = 4
|
| 65 |
+
USE_HALF_PRECISION = False # FP16 for GPU
|
| 66 |
+
|
| 67 |
+
config = Config()
|
| 68 |
+
|
| 69 |
+
# Set torch threads for CPU inference
|
| 70 |
+
torch.set_num_threads(config.TORCH_THREADS)
|
| 71 |
+
|
| 72 |
+
# ==================== MODEL DEFINITION ====================
|
| 73 |
+
class DeBERTaEmotionClassifier(nn.Module):
|
| 74 |
+
"""DeBERTa model for emotion classification"""
|
| 75 |
+
def __init__(self, config_dict: Dict, num_labels: int):
|
| 76 |
+
super().__init__()
|
| 77 |
+
from transformers import DebertaV2Config
|
| 78 |
+
deberta_config = DebertaV2Config(**config_dict)
|
| 79 |
+
self.deberta = DebertaV2Model(deberta_config)
|
| 80 |
+
self.dropout = nn.Dropout(0.1)
|
| 81 |
+
self.classifier = nn.Linear(deberta_config.hidden_size, num_labels)
|
| 82 |
+
|
| 83 |
+
def forward(self, input_ids, attention_mask):
|
| 84 |
+
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
| 85 |
+
sequence_output = outputs.last_hidden_state
|
| 86 |
+
cls_output = sequence_output[:, 0, :]
|
| 87 |
+
cls_output = self.dropout(cls_output)
|
| 88 |
+
logits = self.classifier(cls_output)
|
| 89 |
+
return logits
|
| 90 |
+
|
| 91 |
+
# ==================== MODEL MANAGER ====================
|
| 92 |
+
class ModelManager:
|
| 93 |
+
"""Singleton class to manage model loading and inference"""
|
| 94 |
+
_instance = None
|
| 95 |
+
|
| 96 |
+
def __new__(cls):
|
| 97 |
+
if cls._instance is None:
|
| 98 |
+
cls._instance = super().__new__(cls)
|
| 99 |
+
cls._instance.initialized = False
|
| 100 |
+
return cls._instance
|
| 101 |
+
|
| 102 |
+
def __init__(self):
|
| 103 |
+
if not self.initialized:
|
| 104 |
+
self.model = None
|
| 105 |
+
self.tokenizer = None
|
| 106 |
+
self.initialized = True
|
| 107 |
+
|
| 108 |
+
def load_model(self):
|
| 109 |
+
"""Load model and tokenizer with error handling"""
|
| 110 |
+
try:
|
| 111 |
+
logger.info(f"Loading model on device: {config.DEVICE}")
|
| 112 |
+
start_time = time.time()
|
| 113 |
+
|
| 114 |
+
# Load config from local file
|
| 115 |
+
logger.info("Loading model config...")
|
| 116 |
+
config_path = os.path.join(config.MODEL_PATH, "config.json")
|
| 117 |
+
if not os.path.exists(config_path):
|
| 118 |
+
raise FileNotFoundError(f"Model config not found at {config_path}")
|
| 119 |
+
|
| 120 |
+
with open(config_path, 'r') as f:
|
| 121 |
+
model_config = json.load(f)
|
| 122 |
+
|
| 123 |
+
# Load tokenizer from local files or fallback to HuggingFace
|
| 124 |
+
logger.info("Loading tokenizer...")
|
| 125 |
+
tokenizer_files = {
|
| 126 |
+
'vocab.json': os.path.join(config.MODEL_PATH, 'vocab.json'),
|
| 127 |
+
'merges.txt': os.path.join(config.MODEL_PATH, 'merges.txt')
|
| 128 |
+
}
|
| 129 |
+
if os.path.exists(tokenizer_files['vocab.json']):
|
| 130 |
+
logger.info("Loading tokenizer from local files...")
|
| 131 |
+
self.tokenizer = DebertaV2Tokenizer(vocab_file=tokenizer_files['vocab.json'])
|
| 132 |
+
else:
|
| 133 |
+
logger.info("Downloading tokenizer from HuggingFace...")
|
| 134 |
+
self.tokenizer = DebertaV2Tokenizer.from_pretrained("microsoft/deberta-v3-base")
|
| 135 |
+
|
| 136 |
+
# Load model architecture from config
|
| 137 |
+
logger.info("Loading model architecture from config...")
|
| 138 |
+
self.model = DeBERTaEmotionClassifier(config_dict=model_config, num_labels=len(config.EMOTION_CLASSES))
|
| 139 |
+
|
| 140 |
+
# Load trained weights: prefer full model file (safetensors) then fall back to checkpoint
|
| 141 |
+
safetensors_path = os.path.join(config.MODEL_PATH, "model.safetensors")
|
| 142 |
+
classifier_path = os.path.join(config.MODEL_PATH, "classifier.pt")
|
| 143 |
+
|
| 144 |
+
# Helper to map keys that were saved without proper prefixes
|
| 145 |
+
def _normalize_state_dict_keys(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 146 |
+
"""
|
| 147 |
+
Normalize state dict keys to match the model architecture:
|
| 148 |
+
- Add 'deberta.' prefix to encoder/embedding keys if missing
|
| 149 |
+
- Add 'classifier.' prefix to weight/bias keys if they're classifier weights
|
| 150 |
+
"""
|
| 151 |
+
if not state_dict:
|
| 152 |
+
return state_dict
|
| 153 |
+
|
| 154 |
+
mapped = {}
|
| 155 |
+
first_key = next(iter(state_dict.keys()), None)
|
| 156 |
+
|
| 157 |
+
for k, v in state_dict.items():
|
| 158 |
+
# Check if this is a classifier weight/bias (2D/1D tensor from Linear layer)
|
| 159 |
+
# Classifier: weight [7, 768], bias [7]
|
| 160 |
+
if k in ['weight', 'bias']:
|
| 161 |
+
# Verify this is classifier-sized (num_classes=7, hidden_size=768)
|
| 162 |
+
if k == 'weight' and len(v.shape) == 2 and v.shape[0] == 7 and v.shape[1] == 768:
|
| 163 |
+
mapped['classifier.weight'] = v
|
| 164 |
+
elif k == 'bias' and len(v.shape) == 1 and v.shape[0] == 7:
|
| 165 |
+
mapped['classifier.bias'] = v
|
| 166 |
+
else:
|
| 167 |
+
mapped[k] = v
|
| 168 |
+
# Add deberta prefix to encoder/embedding keys if missing
|
| 169 |
+
elif k.startswith("deberta."):
|
| 170 |
+
# Already has prefix
|
| 171 |
+
mapped[k] = v
|
| 172 |
+
elif k.startswith("embeddings.") or k.startswith("encoder.") or k.startswith("rel_embeddings") or k.startswith("LayerNorm") or k.startswith("word_embeddings"):
|
| 173 |
+
# Encoder/embedding key without prefix
|
| 174 |
+
mapped[f"deberta.{k}"] = v
|
| 175 |
+
else:
|
| 176 |
+
# Keep as-is (dropout, etc.)
|
| 177 |
+
mapped[k] = v
|
| 178 |
+
|
| 179 |
+
return mapped
|
| 180 |
+
|
| 181 |
+
# 1) Try safetensors full-model file (fast and safe if present)
|
| 182 |
+
if os.path.exists(safetensors_path):
|
| 183 |
+
try:
|
| 184 |
+
logger.info("Loading full trained model from safetensors...")
|
| 185 |
+
try:
|
| 186 |
+
from safetensors.torch import load_file
|
| 187 |
+
except Exception as ie:
|
| 188 |
+
logger.error("safetensors package not available: %s", ie)
|
| 189 |
+
raise
|
| 190 |
+
|
| 191 |
+
state = load_file(safetensors_path)
|
| 192 |
+
# state is a dict of tensors; adjust keys if necessary
|
| 193 |
+
mapped = _normalize_state_dict_keys(state)
|
| 194 |
+
load_res = self.model.load_state_dict(mapped, strict=False)
|
| 195 |
+
logger.info("Loaded safetensors model (missing: %s, unexpected: %s)", getattr(load_res, 'missing_keys', []), getattr(load_res, 'unexpected_keys', []))
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.error("Error loading safetensors model: %s", e, exc_info=True)
|
| 198 |
+
# fall through to try checkpoint
|
| 199 |
+
|
| 200 |
+
# 2) Fallback: try classic PyTorch checkpoint
|
| 201 |
+
if os.path.exists(classifier_path):
|
| 202 |
+
try:
|
| 203 |
+
logger.info("Loading trained checkpoint (torch) ...")
|
| 204 |
+
# In recent PyTorch versions the default weights_only may block some globals. Use weights_only=False
|
| 205 |
+
checkpoint = torch.load(classifier_path, map_location=config.DEVICE, weights_only=False)
|
| 206 |
+
|
| 207 |
+
# checkpoint might be a dict containing different keys depending on how it was saved
|
| 208 |
+
if isinstance(checkpoint, dict):
|
| 209 |
+
# Common key names used in training scripts
|
| 210 |
+
if 'model_state_dict' in checkpoint:
|
| 211 |
+
sd = checkpoint['model_state_dict']
|
| 212 |
+
elif 'state_dict' in checkpoint:
|
| 213 |
+
sd = checkpoint['state_dict']
|
| 214 |
+
elif 'classifier_state_dict' in checkpoint or 'dropout_state_dict' in checkpoint:
|
| 215 |
+
# old style: only classifier saved
|
| 216 |
+
if 'classifier_state_dict' in checkpoint:
|
| 217 |
+
try:
|
| 218 |
+
self.model.classifier.load_state_dict(checkpoint['classifier_state_dict'])
|
| 219 |
+
except Exception:
|
| 220 |
+
# try flexible load with key normalization
|
| 221 |
+
normalized = _normalize_state_dict_keys(checkpoint['classifier_state_dict'])
|
| 222 |
+
self.model.load_state_dict(normalized, strict=False)
|
| 223 |
+
if 'dropout_state_dict' in checkpoint:
|
| 224 |
+
try:
|
| 225 |
+
self.model.dropout.load_state_dict(checkpoint['dropout_state_dict'])
|
| 226 |
+
except Exception:
|
| 227 |
+
logger.warning('Could not load dropout state dict')
|
| 228 |
+
sd = None
|
| 229 |
+
else:
|
| 230 |
+
sd = checkpoint
|
| 231 |
+
|
| 232 |
+
if sd:
|
| 233 |
+
# sd may contain keys without proper prefixes
|
| 234 |
+
mapped = _normalize_state_dict_keys(sd)
|
| 235 |
+
load_res = self.model.load_state_dict(mapped, strict=False)
|
| 236 |
+
logger.info("Loaded checkpoint (missing: %s, unexpected: %s)", getattr(load_res, 'missing_keys', []), getattr(load_res, 'unexpected_keys', []))
|
| 237 |
+
else:
|
| 238 |
+
# Not a dict: cannot handle
|
| 239 |
+
logger.warning("Checkpoint loaded but is not a dict, skipping")
|
| 240 |
+
|
| 241 |
+
except Exception as e:
|
| 242 |
+
logger.error("Error loading checkpoint: %s", e, exc_info=True)
|
| 243 |
+
raise
|
| 244 |
+
else:
|
| 245 |
+
logger.warning(f"No trained model found at {safetensors_path} or {classifier_path}, using base model")
|
| 246 |
+
|
| 247 |
+
# Move to device
|
| 248 |
+
self.model.to(config.DEVICE)
|
| 249 |
+
self.model.eval()
|
| 250 |
+
|
| 251 |
+
# Apply half precision for GPU
|
| 252 |
+
if config.USE_HALF_PRECISION:
|
| 253 |
+
self.model.half()
|
| 254 |
+
logger.info("Applied FP16 precision")
|
| 255 |
+
|
| 256 |
+
# Optimize for inference
|
| 257 |
+
if config.DEVICE == "cuda":
|
| 258 |
+
torch.backends.cudnn.benchmark = True
|
| 259 |
+
|
| 260 |
+
load_time = time.time() - start_time
|
| 261 |
+
logger.info(f"Model loaded successfully in {load_time:.2f}s")
|
| 262 |
+
logger.info(f"Memory usage: {psutil.Process().memory_info().rss / 1024 ** 2:.2f} MB")
|
| 263 |
+
|
| 264 |
+
return True
|
| 265 |
+
|
| 266 |
+
except FileNotFoundError as e:
|
| 267 |
+
logger.error(f"Model files not found: {e}")
|
| 268 |
+
raise HTTPException(status_code=500, detail=f"Model files not found: {str(e)}")
|
| 269 |
+
except Exception as e:
|
| 270 |
+
logger.error(f"Error loading model: {e}", exc_info=True)
|
| 271 |
+
raise HTTPException(status_code=500, detail=f"Failed to load model: {str(e)}")
|
| 272 |
+
|
| 273 |
+
@torch.no_grad()
|
| 274 |
+
def predict(self, text: str) -> Dict:
|
| 275 |
+
"""Run inference on input text"""
|
| 276 |
+
try:
|
| 277 |
+
if not self.model or not self.tokenizer:
|
| 278 |
+
raise ValueError("Model not loaded")
|
| 279 |
+
|
| 280 |
+
start_time = time.time()
|
| 281 |
+
|
| 282 |
+
# Tokenize
|
| 283 |
+
encoding = self.tokenizer(
|
| 284 |
+
text,
|
| 285 |
+
add_special_tokens=True,
|
| 286 |
+
max_length=config.MAX_LENGTH,
|
| 287 |
+
padding='max_length',
|
| 288 |
+
truncation=True,
|
| 289 |
+
return_attention_mask=True,
|
| 290 |
+
return_tensors='pt'
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
input_ids = encoding['input_ids'].to(config.DEVICE)
|
| 294 |
+
attention_mask = encoding['attention_mask'].to(config.DEVICE)
|
| 295 |
+
|
| 296 |
+
# Apply half precision if enabled
|
| 297 |
+
if config.USE_HALF_PRECISION:
|
| 298 |
+
input_ids = input_ids.half().long() # Convert back to long for embeddings
|
| 299 |
+
|
| 300 |
+
# Inference
|
| 301 |
+
with torch.cuda.amp.autocast(enabled=config.USE_HALF_PRECISION):
|
| 302 |
+
logits = self.model(input_ids, attention_mask)
|
| 303 |
+
|
| 304 |
+
# Get probabilities
|
| 305 |
+
probs = torch.softmax(logits, dim=-1)
|
| 306 |
+
confidence, predicted_class = torch.max(probs, dim=-1)
|
| 307 |
+
|
| 308 |
+
# Convert to CPU and numpy
|
| 309 |
+
probs_np = probs.cpu().float().numpy()[0]
|
| 310 |
+
predicted_idx = predicted_class.item()
|
| 311 |
+
confidence_score = confidence.item()
|
| 312 |
+
|
| 313 |
+
# Create emotion probability dict
|
| 314 |
+
emotion_probs = {
|
| 315 |
+
emotion: float(probs_np[i])
|
| 316 |
+
for i, emotion in enumerate(config.EMOTION_CLASSES)
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
inference_time = time.time() - start_time
|
| 320 |
+
|
| 321 |
+
return {
|
| 322 |
+
"emotion": config.EMOTION_CLASSES[predicted_idx],
|
| 323 |
+
"confidence": confidence_score,
|
| 324 |
+
"all_probabilities": emotion_probs,
|
| 325 |
+
"inference_time_ms": round(inference_time * 1000, 2)
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
except Exception as e:
|
| 329 |
+
logger.error(f"Prediction error: {e}", exc_info=True)
|
| 330 |
+
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")
|
| 331 |
+
|
| 332 |
+
def cleanup(self):
|
| 333 |
+
"""Cleanup resources"""
|
| 334 |
+
try:
|
| 335 |
+
if self.model:
|
| 336 |
+
del self.model
|
| 337 |
+
if self.tokenizer:
|
| 338 |
+
del self.tokenizer
|
| 339 |
+
gc.collect()
|
| 340 |
+
if torch.cuda.is_available():
|
| 341 |
+
torch.cuda.empty_cache()
|
| 342 |
+
logger.info("Model resources cleaned up")
|
| 343 |
+
except Exception as e:
|
| 344 |
+
logger.error(f"Cleanup error: {e}")
|
| 345 |
+
|
| 346 |
+
# ==================== LIFESPAN MANAGEMENT ====================
|
| 347 |
+
model_manager = ModelManager()
|
| 348 |
+
|
| 349 |
+
@asynccontextmanager
|
| 350 |
+
async def lifespan(app: FastAPI):
|
| 351 |
+
"""Manage application lifecycle"""
|
| 352 |
+
# Startup
|
| 353 |
+
logger.info("Starting application...")
|
| 354 |
+
try:
|
| 355 |
+
model_manager.load_model()
|
| 356 |
+
logger.info("Application ready")
|
| 357 |
+
except Exception as e:
|
| 358 |
+
logger.error(f"Startup failed: {e}")
|
| 359 |
+
raise
|
| 360 |
+
|
| 361 |
+
yield
|
| 362 |
+
|
| 363 |
+
# Shutdown
|
| 364 |
+
logger.info("Shutting down application...")
|
| 365 |
+
model_manager.cleanup()
|
| 366 |
+
logger.info("Application stopped")
|
| 367 |
+
|
| 368 |
+
# ==================== FASTAPI APP ====================
|
| 369 |
+
app = FastAPI(
|
| 370 |
+
title="Emotion Detection API",
|
| 371 |
+
description="DeBERTa v3 based emotion detection for 7 emotion classes",
|
| 372 |
+
version="1.0.0",
|
| 373 |
+
lifespan=lifespan
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
# CORS middleware
|
| 377 |
+
app.add_middleware(
|
| 378 |
+
CORSMiddleware,
|
| 379 |
+
allow_origins=["*"], # Configure appropriately for production
|
| 380 |
+
allow_credentials=True,
|
| 381 |
+
allow_methods=["*"],
|
| 382 |
+
allow_headers=["*"],
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# ==================== REQUEST/RESPONSE MODELS ====================
|
| 386 |
+
class PredictionRequest(BaseModel):
|
| 387 |
+
text: str = Field(..., min_length=1, max_length=config.MAX_TEXT_LENGTH)
|
| 388 |
+
|
| 389 |
+
@field_validator('text')
|
| 390 |
+
@classmethod
|
| 391 |
+
def validate_text(cls, v):
|
| 392 |
+
if not v or not v.strip():
|
| 393 |
+
raise ValueError('Text cannot be empty or whitespace only')
|
| 394 |
+
return v.strip()
|
| 395 |
+
|
| 396 |
+
class PredictionResponse(BaseModel):
|
| 397 |
+
emotion: str
|
| 398 |
+
confidence: float
|
| 399 |
+
all_probabilities: Dict[str, float]
|
| 400 |
+
inference_time_ms: float
|
| 401 |
+
text_length: int
|
| 402 |
+
|
| 403 |
+
class HealthResponse(BaseModel):
|
| 404 |
+
status: str
|
| 405 |
+
device: str
|
| 406 |
+
model_loaded: bool
|
| 407 |
+
memory_mb: float
|
| 408 |
+
|
| 409 |
+
class BatchPredictionRequest(BaseModel):
|
| 410 |
+
texts: List[str] = Field(..., min_length=1, max_length=10)
|
| 411 |
+
|
| 412 |
+
@field_validator('texts')
|
| 413 |
+
@classmethod
|
| 414 |
+
def validate_texts(cls, v):
|
| 415 |
+
cleaned = [t.strip() for t in v if t and t.strip()]
|
| 416 |
+
if not cleaned:
|
| 417 |
+
raise ValueError('At least one valid text required')
|
| 418 |
+
if len(cleaned) > 10:
|
| 419 |
+
raise ValueError('Maximum 10 texts allowed per batch')
|
| 420 |
+
return cleaned
|
| 421 |
+
|
| 422 |
+
# ==================== MOVIE MODELS ====================
|
| 423 |
+
class MovieItem(BaseModel):
|
| 424 |
+
id: int
|
| 425 |
+
title: str
|
| 426 |
+
poster_path: Optional[str] = None
|
| 427 |
+
vote_average: float
|
| 428 |
+
release_date: Optional[str] = None
|
| 429 |
+
|
| 430 |
+
class GenreMovies(BaseModel):
|
| 431 |
+
genre: str
|
| 432 |
+
movies: List[MovieItem]
|
| 433 |
+
|
| 434 |
+
class RecommendationResponse(BaseModel):
|
| 435 |
+
emotion: str
|
| 436 |
+
confidence: float
|
| 437 |
+
recommendations: List[GenreMovies]
|
| 438 |
+
|
| 439 |
+
# ==================== ENDPOINTS ====================
|
| 440 |
+
@app.get("/", response_model=Dict)
|
| 441 |
+
async def root():
|
| 442 |
+
"""Root endpoint"""
|
| 443 |
+
return {
|
| 444 |
+
"message": "Emotion Detection API",
|
| 445 |
+
"version": "1.0.0",
|
| 446 |
+
"endpoints": {
|
| 447 |
+
"predict": "/predict",
|
| 448 |
+
"batch_predict": "/batch_predict",
|
| 449 |
+
"health": "/health",
|
| 450 |
+
"emotions": "/emotions"
|
| 451 |
+
}
|
| 452 |
+
}
|
| 453 |
+
|
| 454 |
+
@app.get("/health", response_model=HealthResponse)
|
| 455 |
+
async def health_check():
|
| 456 |
+
"""Health check endpoint"""
|
| 457 |
+
try:
|
| 458 |
+
memory_mb = psutil.Process().memory_info().rss / 1024 ** 2
|
| 459 |
+
return HealthResponse(
|
| 460 |
+
status="healthy",
|
| 461 |
+
device=config.DEVICE,
|
| 462 |
+
model_loaded=model_manager.model is not None,
|
| 463 |
+
memory_mb=round(memory_mb, 2)
|
| 464 |
+
)
|
| 465 |
+
except Exception as e:
|
| 466 |
+
logger.error(f"Health check failed: {e}")
|
| 467 |
+
raise HTTPException(status_code=500, detail="Health check failed")
|
| 468 |
+
|
| 469 |
+
@app.get("/emotions", response_model=Dict)
|
| 470 |
+
async def get_emotions():
|
| 471 |
+
"""Get list of supported emotions"""
|
| 472 |
+
return {
|
| 473 |
+
"emotions": config.EMOTION_CLASSES,
|
| 474 |
+
"count": len(config.EMOTION_CLASSES)
|
| 475 |
+
}
|
| 476 |
+
|
| 477 |
+
@app.post("/predict", response_model=PredictionResponse)
|
| 478 |
+
async def predict_emotion(request: PredictionRequest):
|
| 479 |
+
"""Predict emotion for single text"""
|
| 480 |
+
try:
|
| 481 |
+
logger.info(f"Prediction request: {len(request.text)} chars")
|
| 482 |
+
|
| 483 |
+
result = model_manager.predict(request.text)
|
| 484 |
+
|
| 485 |
+
return PredictionResponse(
|
| 486 |
+
emotion=result["emotion"],
|
| 487 |
+
confidence=result["confidence"],
|
| 488 |
+
all_probabilities=result["all_probabilities"],
|
| 489 |
+
inference_time_ms=result["inference_time_ms"],
|
| 490 |
+
text_length=len(request.text)
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
except HTTPException:
|
| 494 |
+
raise
|
| 495 |
+
except Exception as e:
|
| 496 |
+
logger.error(f"Prediction endpoint error: {e}", exc_info=True)
|
| 497 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 498 |
+
|
| 499 |
+
@app.post("/batch_predict")
|
| 500 |
+
async def batch_predict_emotion(request: BatchPredictionRequest):
|
| 501 |
+
"""Predict emotions for multiple texts"""
|
| 502 |
+
try:
|
| 503 |
+
logger.info(f"Batch prediction request: {len(request.texts)} texts")
|
| 504 |
+
|
| 505 |
+
results = []
|
| 506 |
+
for text in request.texts:
|
| 507 |
+
result = model_manager.predict(text)
|
| 508 |
+
results.append({
|
| 509 |
+
"text": text[:100] + "..." if len(text) > 100 else text,
|
| 510 |
+
"emotion": result["emotion"],
|
| 511 |
+
"confidence": result["confidence"],
|
| 512 |
+
"all_probabilities": result["all_probabilities"]
|
| 513 |
+
})
|
| 514 |
+
|
| 515 |
+
return {
|
| 516 |
+
"count": len(results),
|
| 517 |
+
"predictions": results
|
| 518 |
+
}
|
| 519 |
+
|
| 520 |
+
except Exception as e:
|
| 521 |
+
logger.error(f"Batch prediction error: {e}", exc_info=True)
|
| 522 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 523 |
+
|
| 524 |
+
@app.post("/recommendations", response_model=RecommendationResponse)
|
| 525 |
+
async def get_movie_recommendations(request: PredictionRequest):
|
| 526 |
+
"""
|
| 527 |
+
Predict emotion and fetch movie recommendations based on detected emotion.
|
| 528 |
+
Maps emotion to genres and fetches 12 most popular movies per genre from TMDB.
|
| 529 |
+
"""
|
| 530 |
+
try:
|
| 531 |
+
logger.info(f"Recommendation request: {len(request.text)} chars")
|
| 532 |
+
|
| 533 |
+
# 1. Detect emotion
|
| 534 |
+
emotion_result = model_manager.predict(request.text)
|
| 535 |
+
detected_emotion = emotion_result["emotion"]
|
| 536 |
+
confidence = emotion_result["confidence"]
|
| 537 |
+
|
| 538 |
+
logger.info(f"Detected emotion: {detected_emotion} (confidence: {confidence})")
|
| 539 |
+
|
| 540 |
+
# 2. Get mapped genres for this emotion
|
| 541 |
+
genres = config.EMOTION_GENRE_MAP.get(detected_emotion, [])
|
| 542 |
+
if not genres:
|
| 543 |
+
raise HTTPException(status_code=400, detail=f"No genres mapped for emotion: {detected_emotion}")
|
| 544 |
+
|
| 545 |
+
# 3. Fetch movies for these genres
|
| 546 |
+
movies_by_genre = await fetch_movies_by_genres(genres, limit=12)
|
| 547 |
+
|
| 548 |
+
# 4. Format response
|
| 549 |
+
recommendations = []
|
| 550 |
+
for genre in genres:
|
| 551 |
+
if genre in movies_by_genre:
|
| 552 |
+
recommendations.append(GenreMovies(
|
| 553 |
+
genre=genre,
|
| 554 |
+
movies=movies_by_genre[genre]
|
| 555 |
+
))
|
| 556 |
+
|
| 557 |
+
return RecommendationResponse(
|
| 558 |
+
emotion=detected_emotion,
|
| 559 |
+
confidence=confidence,
|
| 560 |
+
recommendations=recommendations
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
except HTTPException:
|
| 564 |
+
raise
|
| 565 |
+
except Exception as e:
|
| 566 |
+
logger.error(f"Recommendation error: {e}", exc_info=True)
|
| 567 |
+
raise HTTPException(status_code=500, detail=f"Failed to get recommendations: {str(e)}")
|
| 568 |
+
|
| 569 |
+
# ==================== ERROR HANDLERS ====================
|
| 570 |
+
@app.exception_handler(Exception)
|
| 571 |
+
async def global_exception_handler(request: Request, exc: Exception):
|
| 572 |
+
"""Global exception handler"""
|
| 573 |
+
logger.error(f"Unhandled exception: {exc}", exc_info=True)
|
| 574 |
+
return JSONResponse(
|
| 575 |
+
status_code=500,
|
| 576 |
+
content={
|
| 577 |
+
"error": "Internal server error",
|
| 578 |
+
"detail": str(exc),
|
| 579 |
+
"path": str(request.url)
|
| 580 |
+
}
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
# ==================== TMDB MOVIE FETCHING ====================
|
| 584 |
+
async def fetch_movies_by_genres(genres: List[str], limit: int = 12) -> Dict[str, List[MovieItem]]:
|
| 585 |
+
"""
|
| 586 |
+
Fetch movies from TMDB API for given genres.
|
| 587 |
+
Returns dict with genre as key and list of MovieItem as value.
|
| 588 |
+
"""
|
| 589 |
+
if not TMDB_API_KEY:
|
| 590 |
+
logger.error("TMDB_API_KEY not configured")
|
| 591 |
+
raise HTTPException(status_code=500, detail="Movie service not configured. Please set TMDB_API_KEY environment variable.")
|
| 592 |
+
|
| 593 |
+
movies_by_genre = {}
|
| 594 |
+
|
| 595 |
+
async with httpx.AsyncClient(timeout=10.0) as client:
|
| 596 |
+
for genre in genres:
|
| 597 |
+
try:
|
| 598 |
+
logger.info(f"Fetching movies for genre: {genre}")
|
| 599 |
+
|
| 600 |
+
# Get genre ID from genre name
|
| 601 |
+
genres_response = await client.get(
|
| 602 |
+
f"{TMDB_BASE_URL}/genre/movie/list",
|
| 603 |
+
params={"api_key": TMDB_API_KEY}
|
| 604 |
+
)
|
| 605 |
+
genres_response.raise_for_status()
|
| 606 |
+
genres_data = genres_response.json()
|
| 607 |
+
|
| 608 |
+
genre_id = None
|
| 609 |
+
for g in genres_data.get("genres", []):
|
| 610 |
+
if g["name"].lower() == genre.lower():
|
| 611 |
+
genre_id = g["id"]
|
| 612 |
+
break
|
| 613 |
+
|
| 614 |
+
if not genre_id:
|
| 615 |
+
logger.warning(f"Genre '{genre}' not found in TMDB")
|
| 616 |
+
continue
|
| 617 |
+
|
| 618 |
+
# Fetch movies for this genre, sorted by popularity (descending)
|
| 619 |
+
movies_response = await client.get(
|
| 620 |
+
f"{TMDB_BASE_URL}/discover/movie",
|
| 621 |
+
params={
|
| 622 |
+
"api_key": TMDB_API_KEY,
|
| 623 |
+
"with_genres": genre_id,
|
| 624 |
+
"sort_by": "popularity.desc",
|
| 625 |
+
"page": 1,
|
| 626 |
+
"language": "en-US"
|
| 627 |
+
}
|
| 628 |
+
)
|
| 629 |
+
movies_response.raise_for_status()
|
| 630 |
+
movies_data = movies_response.json()
|
| 631 |
+
|
| 632 |
+
# Parse movies
|
| 633 |
+
movie_list = []
|
| 634 |
+
for movie in movies_data.get("results", [])[:limit]:
|
| 635 |
+
movie_list.append(MovieItem(
|
| 636 |
+
id=movie.get("id"),
|
| 637 |
+
title=movie.get("title", "Unknown"),
|
| 638 |
+
poster_path=movie.get("poster_path"),
|
| 639 |
+
vote_average=movie.get("vote_average", 0.0),
|
| 640 |
+
release_date=movie.get("release_date", "N/A")
|
| 641 |
+
))
|
| 642 |
+
|
| 643 |
+
if movie_list:
|
| 644 |
+
movies_by_genre[genre] = movie_list
|
| 645 |
+
logger.info(f"Fetched {len(movie_list)} movies for genre: {genre}")
|
| 646 |
+
else:
|
| 647 |
+
logger.warning(f"No movies found for genre: {genre}")
|
| 648 |
+
|
| 649 |
+
except httpx.HTTPError as e:
|
| 650 |
+
logger.error(f"HTTP error fetching movies for {genre}: {e}")
|
| 651 |
+
except Exception as e:
|
| 652 |
+
logger.error(f"Error fetching movies for {genre}: {e}", exc_info=True)
|
| 653 |
+
|
| 654 |
+
return movies_by_genre
|
| 655 |
+
|
| 656 |
+
# ==================== MAIN ====================
|
| 657 |
+
if __name__ == "__main__":
|
| 658 |
+
uvicorn.run(
|
| 659 |
+
"main:app",
|
| 660 |
+
host="0.0.0.0",
|
| 661 |
+
port=8000,
|
| 662 |
+
reload=False,
|
| 663 |
+
log_level="info",
|
| 664 |
+
access_log=True
|
| 665 |
+
)
|
app/backend/requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn==0.24.0
|
| 3 |
+
torch==2.2.0
|
| 4 |
+
transformers>=4.35.2
|
| 5 |
+
safetensors>=0.4.16
|
| 6 |
+
python-dotenv==1.0.0
|
| 7 |
+
httpx==0.25.1
|
| 8 |
+
pydantic==2.5.0
|
| 9 |
+
psutil==5.9.6
|
app/backend/runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.12
|
app/frontend/.gitignore
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Logs
|
| 2 |
+
logs
|
| 3 |
+
*.log
|
| 4 |
+
npm-debug.log*
|
| 5 |
+
yarn-debug.log*
|
| 6 |
+
yarn-error.log*
|
| 7 |
+
pnpm-debug.log*
|
| 8 |
+
lerna-debug.log*
|
| 9 |
+
|
| 10 |
+
node_modules
|
| 11 |
+
dist
|
| 12 |
+
dist-ssr
|
| 13 |
+
*.local
|
| 14 |
+
|
| 15 |
+
# Editor directories and files
|
| 16 |
+
.vscode/*
|
| 17 |
+
!.vscode/extensions.json
|
| 18 |
+
.idea
|
| 19 |
+
.DS_Store
|
| 20 |
+
*.suo
|
| 21 |
+
*.ntvs*
|
| 22 |
+
*.njsproj
|
| 23 |
+
*.sln
|
| 24 |
+
*.sw?
|
app/frontend/eslint.config.js
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import js from '@eslint/js'
|
| 2 |
+
import globals from 'globals'
|
| 3 |
+
import reactHooks from 'eslint-plugin-react-hooks'
|
| 4 |
+
import reactRefresh from 'eslint-plugin-react-refresh'
|
| 5 |
+
import { defineConfig, globalIgnores } from 'eslint/config'
|
| 6 |
+
|
| 7 |
+
export default defineConfig([
|
| 8 |
+
globalIgnores(['dist']),
|
| 9 |
+
{
|
| 10 |
+
files: ['**/*.{js,jsx}'],
|
| 11 |
+
extends: [
|
| 12 |
+
js.configs.recommended,
|
| 13 |
+
reactHooks.configs['recommended-latest'],
|
| 14 |
+
reactRefresh.configs.vite,
|
| 15 |
+
],
|
| 16 |
+
languageOptions: {
|
| 17 |
+
ecmaVersion: 2020,
|
| 18 |
+
globals: globals.browser,
|
| 19 |
+
parserOptions: {
|
| 20 |
+
ecmaVersion: 'latest',
|
| 21 |
+
ecmaFeatures: { jsx: true },
|
| 22 |
+
sourceType: 'module',
|
| 23 |
+
},
|
| 24 |
+
},
|
| 25 |
+
rules: {
|
| 26 |
+
'no-unused-vars': ['error', { varsIgnorePattern: '^[A-Z_]' }],
|
| 27 |
+
},
|
| 28 |
+
},
|
| 29 |
+
])
|
app/frontend/index.html
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!doctype html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8" />
|
| 5 |
+
<link rel="icon" type="image/svg+xml" href="/vite.svg" />
|
| 6 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
| 7 |
+
<title>frontend</title>
|
| 8 |
+
</head>
|
| 9 |
+
<body>
|
| 10 |
+
<div id="root"></div>
|
| 11 |
+
<script type="module" src="/src/main.jsx"></script>
|
| 12 |
+
</body>
|
| 13 |
+
</html>
|
app/frontend/package-lock.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app/frontend/package.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "frontend",
|
| 3 |
+
"private": true,
|
| 4 |
+
"version": "0.0.0",
|
| 5 |
+
"type": "module",
|
| 6 |
+
"scripts": {
|
| 7 |
+
"dev": "vite",
|
| 8 |
+
"build": "vite build",
|
| 9 |
+
"lint": "eslint .",
|
| 10 |
+
"preview": "vite preview"
|
| 11 |
+
},
|
| 12 |
+
"dependencies": {
|
| 13 |
+
"lucide-react": "^0.553.0",
|
| 14 |
+
"react": "^19.2.0",
|
| 15 |
+
"react-dom": "^19.2.0"
|
| 16 |
+
},
|
| 17 |
+
"devDependencies": {
|
| 18 |
+
"@eslint/js": "^9.39.1",
|
| 19 |
+
"@tailwindcss/postcss": "^4.1.17",
|
| 20 |
+
"@types/react": "^19.2.2",
|
| 21 |
+
"@types/react-dom": "^19.2.2",
|
| 22 |
+
"@vitejs/plugin-react": "^5.1.0",
|
| 23 |
+
"autoprefixer": "^10.4.21",
|
| 24 |
+
"eslint": "^9.39.1",
|
| 25 |
+
"eslint-plugin-react-hooks": "^5.2.0",
|
| 26 |
+
"eslint-plugin-react-refresh": "^0.4.24",
|
| 27 |
+
"globals": "^16.5.0",
|
| 28 |
+
"postcss": "^8.5.6",
|
| 29 |
+
"tailwindcss": "^4.1.17",
|
| 30 |
+
"vite": "^7.2.2"
|
| 31 |
+
}
|
| 32 |
+
}
|
app/frontend/postcss.config.js
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// postcss.config.js (New Way for Tailwind v4)
|
| 2 |
+
export default {
|
| 3 |
+
plugins: {
|
| 4 |
+
'@tailwindcss/postcss': {}, // <-- This is the correct plugin
|
| 5 |
+
autoprefixer: {},
|
| 6 |
+
},
|
| 7 |
+
}
|
app/frontend/public/vite.svg
ADDED
|
|
app/frontend/src/App.css
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#root {
|
| 2 |
+
max-width: 1280px;
|
| 3 |
+
margin: 0 auto;
|
| 4 |
+
padding: 2rem;
|
| 5 |
+
text-align: center;
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
.logo {
|
| 9 |
+
height: 6em;
|
| 10 |
+
padding: 1.5em;
|
| 11 |
+
will-change: filter;
|
| 12 |
+
transition: filter 300ms;
|
| 13 |
+
}
|
| 14 |
+
.logo:hover {
|
| 15 |
+
filter: drop-shadow(0 0 2em #646cffaa);
|
| 16 |
+
}
|
| 17 |
+
.logo.react:hover {
|
| 18 |
+
filter: drop-shadow(0 0 2em #61dafbaa);
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
@keyframes logo-spin {
|
| 22 |
+
from {
|
| 23 |
+
transform: rotate(0deg);
|
| 24 |
+
}
|
| 25 |
+
to {
|
| 26 |
+
transform: rotate(360deg);
|
| 27 |
+
}
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
@media (prefers-reduced-motion: no-preference) {
|
| 31 |
+
a:nth-of-type(2) .logo {
|
| 32 |
+
animation: logo-spin infinite 20s linear;
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
.card {
|
| 37 |
+
padding: 2em;
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
.read-the-docs {
|
| 41 |
+
color: #888;
|
| 42 |
+
}
|
app/frontend/src/App.jsx
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import React, { useState, useEffect, useRef } from 'react';
|
| 2 |
+
import { Send, Loader2, Heart, Frown, Smile, Zap, Meh, AlertCircle, TrendingUp, Moon, Sun } from 'lucide-react';
|
| 3 |
+
import MovieCarousel from './components/MovieCarousel';
|
| 4 |
+
|
| 5 |
+
const EmotionDetector = () => {
|
| 6 |
+
const [text, setText] = useState('');
|
| 7 |
+
const [result, setResult] = useState(null);
|
| 8 |
+
const [movies, setMovies] = useState(null);
|
| 9 |
+
const [loading, setLoading] = useState(false);
|
| 10 |
+
const [error, setError] = useState(null);
|
| 11 |
+
const [apiHealth, setApiHealth] = useState(null);
|
| 12 |
+
const [isDark, setIsDark] = useState(true);
|
| 13 |
+
const textareaRef = useRef(null);
|
| 14 |
+
|
| 15 |
+
// API endpoint - change this to your deployed backend URL
|
| 16 |
+
const API_URL = 'http://localhost:8000';
|
| 17 |
+
|
| 18 |
+
// Emotion configurations with colors and icons
|
| 19 |
+
const emotionConfig = {
|
| 20 |
+
joy: { color: '#FFD700', gradient: 'from-yellow-400 to-amber-500', icon: Smile, emoji: '😊' },
|
| 21 |
+
love: { color: '#FF69B4', gradient: 'from-pink-400 to-rose-500', icon: Heart, emoji: '❤️' },
|
| 22 |
+
surprise: { color: '#9370DB', gradient: 'from-purple-400 to-violet-500', icon: Zap, emoji: '😲' },
|
| 23 |
+
neutral: { color: '#94A3B8', gradient: 'from-slate-400 to-gray-500', icon: Meh, emoji: '😐' },
|
| 24 |
+
sadness: { color: '#4682B4', gradient: 'from-blue-400 to-cyan-600', icon: Frown, emoji: '😢' },
|
| 25 |
+
anger: { color: '#DC143C', gradient: 'from-red-500 to-orange-600', icon: AlertCircle, emoji: '😠' },
|
| 26 |
+
fear: { color: '#8B4513', gradient: 'from-amber-700 to-orange-800', icon: TrendingUp, emoji: '😨' }
|
| 27 |
+
};
|
| 28 |
+
|
| 29 |
+
// Check API health on mount
|
| 30 |
+
useEffect(() => {
|
| 31 |
+
checkHealth();
|
| 32 |
+
}, []);
|
| 33 |
+
|
| 34 |
+
const checkHealth = async () => {
|
| 35 |
+
try {
|
| 36 |
+
const response = await fetch(`${API_URL}/health`);
|
| 37 |
+
if (response.ok) {
|
| 38 |
+
const data = await response.json();
|
| 39 |
+
setApiHealth(data);
|
| 40 |
+
}
|
| 41 |
+
} catch (err) {
|
| 42 |
+
console.error('Health check failed:', err);
|
| 43 |
+
}
|
| 44 |
+
};
|
| 45 |
+
|
| 46 |
+
const handleSubmit = async (e) => {
|
| 47 |
+
e.preventDefault();
|
| 48 |
+
|
| 49 |
+
if (!text.trim()) {
|
| 50 |
+
setError('Please enter some text');
|
| 51 |
+
return;
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
if (text.length > 5000) {
|
| 55 |
+
setError('Text too long (max 5000 characters)');
|
| 56 |
+
return;
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
setLoading(true);
|
| 60 |
+
setError(null);
|
| 61 |
+
setResult(null);
|
| 62 |
+
setMovies(null);
|
| 63 |
+
|
| 64 |
+
try {
|
| 65 |
+
// Call the new /recommendations endpoint
|
| 66 |
+
const response = await fetch(`${API_URL}/recommendations`, {
|
| 67 |
+
method: 'POST',
|
| 68 |
+
headers: {
|
| 69 |
+
'Content-Type': 'application/json',
|
| 70 |
+
},
|
| 71 |
+
body: JSON.stringify({ text: text.trim() }),
|
| 72 |
+
});
|
| 73 |
+
|
| 74 |
+
if (!response.ok) {
|
| 75 |
+
const errorData = await response.json();
|
| 76 |
+
throw new Error(errorData.detail || 'Prediction failed');
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
const data = await response.json();
|
| 80 |
+
setResult({
|
| 81 |
+
emotion: data.emotion,
|
| 82 |
+
confidence: data.confidence,
|
| 83 |
+
});
|
| 84 |
+
setMovies(data.recommendations);
|
| 85 |
+
|
| 86 |
+
} catch (err) {
|
| 87 |
+
setError(err.message || 'Failed to connect to server');
|
| 88 |
+
console.error('Prediction error:', err);
|
| 89 |
+
} finally {
|
| 90 |
+
setLoading(false);
|
| 91 |
+
}
|
| 92 |
+
};
|
| 93 |
+
|
| 94 |
+
const handleTextChange = (e) => {
|
| 95 |
+
setText(e.target.value);
|
| 96 |
+
setError(null);
|
| 97 |
+
};
|
| 98 |
+
|
| 99 |
+
const handleClear = () => {
|
| 100 |
+
setText('');
|
| 101 |
+
setResult(null);
|
| 102 |
+
setMovies(null);
|
| 103 |
+
setError(null);
|
| 104 |
+
textareaRef.current?.focus();
|
| 105 |
+
};
|
| 106 |
+
|
| 107 |
+
const tryExample = (exampleText) => {
|
| 108 |
+
setText(exampleText);
|
| 109 |
+
setError(null);
|
| 110 |
+
setResult(null);
|
| 111 |
+
setMovies(null);
|
| 112 |
+
};
|
| 113 |
+
|
| 114 |
+
const exampleTexts = [
|
| 115 |
+
"I'm so excited about my vacation next week!",
|
| 116 |
+
"This situation makes me really frustrated and angry.",
|
| 117 |
+
"I miss my family so much, feeling lonely today.",
|
| 118 |
+
"You mean everything to me, I love you.",
|
| 119 |
+
"I'm worried about the exam results tomorrow.",
|
| 120 |
+
"Just another regular day at work.",
|
| 121 |
+
"Wow! I can't believe this just happened!"
|
| 122 |
+
];
|
| 123 |
+
|
| 124 |
+
// Dark theme: Blade Runner 2049 - Neon pink/purple cyberpunk
|
| 125 |
+
// Light theme: Joker 2019 - Neon orange suit inspired
|
| 126 |
+
const bgLight = 'bg-gradient-to-br from-orange-50 via-amber-50 to-red-50';
|
| 127 |
+
const bgDark = 'bg-gradient-to-br from-slate-950 via-purple-950 to-slate-950';
|
| 128 |
+
|
| 129 |
+
const headerLight = 'bg-gradient-to-r from-orange-500 via-red-500 to-orange-600 border-orange-400';
|
| 130 |
+
const headerDark = 'bg-gradient-to-r from-fuchsia-900 via-purple-900 to-violet-900 border-fuchsia-600';
|
| 131 |
+
|
| 132 |
+
const cardLight = 'bg-white border-orange-400 shadow-lg';
|
| 133 |
+
const cardDark = 'bg-slate-900/80 border-fuchsia-500 shadow-2xl shadow-fuchsia-500/20';
|
| 134 |
+
|
| 135 |
+
const sortedEmotions = result
|
| 136 |
+
? Object.entries(result.all_probabilities || {}).sort((a, b) => b[1] - a[1])
|
| 137 |
+
: [];
|
| 138 |
+
|
| 139 |
+
return (
|
| 140 |
+
<div className={`min-h-screen transition-colors duration-300 ${isDark ? bgDark : bgLight}`}>
|
| 141 |
+
{/* Header */}
|
| 142 |
+
<div className={`border-b backdrop-blur-sm shadow-md ${isDark ? headerDark : headerLight}`}>
|
| 143 |
+
<div className="max-w-6xl mx-auto px-4 py-4 sm:px-6 lg:px-8">
|
| 144 |
+
<div className="flex items-center justify-between">
|
| 145 |
+
<div className="flex items-center space-x-3">
|
| 146 |
+
<div className={`w-10 h-10 rounded-xl flex items-center justify-center ${isDark ? 'bg-gradient-to-br from-fuchsia-500 to-purple-600' : 'bg-gradient-to-br from-orange-500 to-red-600'}`}>
|
| 147 |
+
<Heart className="w-6 h-6 text-white" />
|
| 148 |
+
</div>
|
| 149 |
+
<div>
|
| 150 |
+
<h1 className={`text-2xl font-bold ${isDark ? 'text-transparent bg-clip-text bg-gradient-to-r from-fuchsia-400 to-cyan-400' : 'text-transparent bg-clip-text bg-gradient-to-r from-orange-600 to-red-600'}`}>
|
| 151 |
+
MoodFlix
|
| 152 |
+
</h1>
|
| 153 |
+
<p className={`text-xs ${isDark ? 'text-fuchsia-300' : 'text-orange-700'}`}>Emotion-based Movie Recommendations</p>
|
| 154 |
+
</div>
|
| 155 |
+
</div>
|
| 156 |
+
|
| 157 |
+
<div className="flex items-center space-x-4">
|
| 158 |
+
{apiHealth && (
|
| 159 |
+
<div className={`hidden sm:flex items-center space-x-2 px-3 py-1 rounded-full border ${isDark ? 'bg-cyan-950/50 border-cyan-600' : 'bg-orange-50 border-orange-400'}`}>
|
| 160 |
+
<div className="w-2 h-2 bg-green-500 rounded-full animate-pulse"></div>
|
| 161 |
+
<span className={`text-xs font-medium ${isDark ? 'text-cyan-400' : 'text-orange-700'}`}>
|
| 162 |
+
API Online
|
| 163 |
+
</span>
|
| 164 |
+
</div>
|
| 165 |
+
)}
|
| 166 |
+
|
| 167 |
+
{/* Theme Toggle */}
|
| 168 |
+
<button
|
| 169 |
+
onClick={() => setIsDark(!isDark)}
|
| 170 |
+
className={`p-2 rounded-lg transition-all ${isDark ? 'bg-fuchsia-900/50 hover:bg-fuchsia-800 text-cyan-300 border border-fuchsia-600' : 'bg-orange-300 hover:bg-orange-400 text-gray-900 border border-orange-500'}`}
|
| 171 |
+
>
|
| 172 |
+
{isDark ? <Sun className="w-5 h-5" /> : <Moon className="w-5 h-5" />}
|
| 173 |
+
</button>
|
| 174 |
+
</div>
|
| 175 |
+
</div>
|
| 176 |
+
</div>
|
| 177 |
+
</div>
|
| 178 |
+
|
| 179 |
+
{/* Main Content */}
|
| 180 |
+
<div className="max-w-6xl mx-auto px-4 py-6 sm:px-6 lg:px-8 sm:py-8">
|
| 181 |
+
<div className="grid grid-cols-1 lg:grid-cols-3 gap-6">
|
| 182 |
+
|
| 183 |
+
{/* Left Column - Input */}
|
| 184 |
+
<div className="lg:col-span-2 space-y-6">
|
| 185 |
+
{/* Input Card */}
|
| 186 |
+
<div className={`rounded-2xl border-2 overflow-hidden ${isDark ? cardDark : cardLight}`}>
|
| 187 |
+
<div className="p-6">
|
| 188 |
+
<h2 className={`text-lg font-semibold mb-4 ${isDark ? 'text-white' : 'text-gray-900'}`}>
|
| 189 |
+
How are you feeling?
|
| 190 |
+
</h2>
|
| 191 |
+
|
| 192 |
+
<form onSubmit={handleSubmit} className="space-y-4">
|
| 193 |
+
<div className="relative">
|
| 194 |
+
<textarea
|
| 195 |
+
ref={textareaRef}
|
| 196 |
+
value={text}
|
| 197 |
+
onChange={handleTextChange}
|
| 198 |
+
placeholder="Share your thoughts or feelings... (e.g., 'I'm feeling amazing today!')"
|
| 199 |
+
className={`w-full h-32 sm:h-40 px-4 py-3 border-2 rounded-xl focus:ring-4 transition-all resize-none ${
|
| 200 |
+
isDark
|
| 201 |
+
? 'bg-slate-800 border-fuchsia-500 focus:border-cyan-400 focus:ring-fuchsia-500/20 text-white placeholder-slate-500'
|
| 202 |
+
: 'bg-white border-orange-400 focus:border-red-500 focus:ring-orange-200 text-gray-900 placeholder-gray-400'
|
| 203 |
+
}`}
|
| 204 |
+
disabled={loading}
|
| 205 |
+
/>
|
| 206 |
+
<div className={`absolute bottom-3 right-3 text-xs ${isDark ? 'text-gray-500' : 'text-gray-500'}`}>
|
| 207 |
+
{text.length} / 5000
|
| 208 |
+
</div>
|
| 209 |
+
</div>
|
| 210 |
+
|
| 211 |
+
{error && (
|
| 212 |
+
<div className={`flex items-center space-x-2 p-3 border rounded-lg ${isDark ? 'bg-red-950/50 border-red-600' : 'bg-red-50 border-red-300'}`}>
|
| 213 |
+
<AlertCircle className={`w-4 h-4 flex-shrink-0 ${isDark ? 'text-red-400' : 'text-red-600'}`} />
|
| 214 |
+
<p className={`text-sm ${isDark ? 'text-red-300' : 'text-red-700'}`}>{error}</p>
|
| 215 |
+
</div>
|
| 216 |
+
)}
|
| 217 |
+
|
| 218 |
+
<div className="flex flex-col sm:flex-row gap-3">
|
| 219 |
+
<button
|
| 220 |
+
type="submit"
|
| 221 |
+
disabled={loading || !text.trim()}
|
| 222 |
+
className={`flex-1 flex items-center justify-center space-x-2 px-6 py-3 rounded-xl font-medium shadow-lg hover:shadow-xl transform hover:scale-[1.02] transition-all disabled:opacity-50 disabled:cursor-not-allowed disabled:transform-none ${
|
| 223 |
+
isDark
|
| 224 |
+
? 'bg-gradient-to-r from-fuchsia-600 to-purple-600 text-white hover:from-fuchsia-700 hover:to-purple-700 border border-fuchsia-500'
|
| 225 |
+
: 'bg-gradient-to-r from-orange-500 to-red-500 text-white hover:from-orange-600 hover:to-red-600 border border-orange-400'
|
| 226 |
+
}`}
|
| 227 |
+
>
|
| 228 |
+
{loading ? (
|
| 229 |
+
<>
|
| 230 |
+
<Loader2 className="w-5 h-5 animate-spin" />
|
| 231 |
+
<span>Analyzing & Finding Movies...</span>
|
| 232 |
+
</>
|
| 233 |
+
) : (
|
| 234 |
+
<>
|
| 235 |
+
<Send className="w-5 h-5" />
|
| 236 |
+
<span>Detect & Suggest</span>
|
| 237 |
+
</>
|
| 238 |
+
)}
|
| 239 |
+
</button>
|
| 240 |
+
|
| 241 |
+
<button
|
| 242 |
+
type="button"
|
| 243 |
+
onClick={handleClear}
|
| 244 |
+
disabled={loading}
|
| 245 |
+
className={`px-6 py-3 rounded-xl font-medium transition-colors disabled:opacity-50 ${
|
| 246 |
+
isDark
|
| 247 |
+
? 'bg-slate-800 text-slate-200 hover:bg-slate-700 border border-fuchsia-500'
|
| 248 |
+
: 'bg-orange-200 text-gray-800 hover:bg-orange-300 border border-orange-400'
|
| 249 |
+
}`}
|
| 250 |
+
>
|
| 251 |
+
Clear
|
| 252 |
+
</button>
|
| 253 |
+
</div>
|
| 254 |
+
</form>
|
| 255 |
+
</div>
|
| 256 |
+
</div>
|
| 257 |
+
|
| 258 |
+
{/* Results Card */}
|
| 259 |
+
{result && (
|
| 260 |
+
<div className={`rounded-2xl border-2 overflow-hidden animate-fadeIn ${isDark ? cardDark : cardLight}`}>
|
| 261 |
+
<div className="p-6 space-y-6">
|
| 262 |
+
{/* Primary Emotion */}
|
| 263 |
+
<div>
|
| 264 |
+
<h2 className={`text-lg font-semibold mb-4 ${isDark ? 'text-white' : 'text-gray-900'}`}>
|
| 265 |
+
Your Emotion
|
| 266 |
+
</h2>
|
| 267 |
+
<div className={`relative p-6 rounded-xl bg-gradient-to-r ${emotionConfig[result.emotion].gradient} overflow-hidden`}>
|
| 268 |
+
<div className="absolute top-0 right-0 text-8xl opacity-10">
|
| 269 |
+
{emotionConfig[result.emotion].emoji}
|
| 270 |
+
</div>
|
| 271 |
+
<div className="relative">
|
| 272 |
+
<div className="flex items-center space-x-3 mb-2">
|
| 273 |
+
{React.createElement(emotionConfig[result.emotion].icon, {
|
| 274 |
+
className: "w-8 h-8 text-white"
|
| 275 |
+
})}
|
| 276 |
+
<h3 className="text-3xl font-bold text-white capitalize">
|
| 277 |
+
{result.emotion}
|
| 278 |
+
</h3>
|
| 279 |
+
</div>
|
| 280 |
+
<p className="text-white/90 text-lg">
|
| 281 |
+
Confidence: {(result.confidence * 100).toFixed(1)}%
|
| 282 |
+
</p>
|
| 283 |
+
</div>
|
| 284 |
+
</div>
|
| 285 |
+
</div>
|
| 286 |
+
</div>
|
| 287 |
+
</div>
|
| 288 |
+
)}
|
| 289 |
+
|
| 290 |
+
{/* Movies Carousels */}
|
| 291 |
+
{movies && movies.length > 0 && (
|
| 292 |
+
<div className="space-y-4 animate-fadeIn">
|
| 293 |
+
<h2 className={`text-2xl font-bold ${isDark ? 'text-white' : 'text-gray-900'}`}>
|
| 294 |
+
Movies For You
|
| 295 |
+
</h2>
|
| 296 |
+
{movies.map((genreMovies, idx) => (
|
| 297 |
+
<MovieCarousel
|
| 298 |
+
key={idx}
|
| 299 |
+
genre={genreMovies.genre}
|
| 300 |
+
movies={genreMovies.movies}
|
| 301 |
+
isDark={isDark}
|
| 302 |
+
/>
|
| 303 |
+
))}
|
| 304 |
+
</div>
|
| 305 |
+
)}
|
| 306 |
+
</div>
|
| 307 |
+
|
| 308 |
+
{/* Right Column - Examples & Info */}
|
| 309 |
+
<div className="space-y-6">
|
| 310 |
+
{/* Try Examples */}
|
| 311 |
+
<div className={`rounded-2xl border-2 p-6 overflow-hidden ${isDark ? cardDark : cardLight}`}>
|
| 312 |
+
<h2 className={`text-lg font-semibold mb-4 ${isDark ? 'text-white' : 'text-gray-900'}`}>
|
| 313 |
+
Try Examples
|
| 314 |
+
</h2>
|
| 315 |
+
<div className="space-y-2">
|
| 316 |
+
{exampleTexts.map((example, idx) => (
|
| 317 |
+
<button
|
| 318 |
+
key={idx}
|
| 319 |
+
onClick={() => tryExample(example)}
|
| 320 |
+
disabled={loading}
|
| 321 |
+
className={`w-full text-left px-3 py-2 text-sm rounded-lg transition-colors disabled:opacity-50 border ${
|
| 322 |
+
isDark
|
| 323 |
+
? 'text-slate-300 hover:bg-fuchsia-900/30 hover:text-fuchsia-200 border-fuchsia-600'
|
| 324 |
+
: 'text-gray-700 hover:bg-orange-100 hover:text-orange-700 border-orange-300'
|
| 325 |
+
}`}
|
| 326 |
+
>
|
| 327 |
+
"{example.length > 60 ? example.slice(0, 60) + '...' : example}"
|
| 328 |
+
</button>
|
| 329 |
+
))}
|
| 330 |
+
</div>
|
| 331 |
+
</div>
|
| 332 |
+
|
| 333 |
+
{/* Emotion Legend */}
|
| 334 |
+
<div className={`rounded-2xl border-2 p-6 overflow-hidden ${isDark ? cardDark : cardLight}`}>
|
| 335 |
+
<h2 className={`text-lg font-semibold mb-4 ${isDark ? 'text-white' : 'text-gray-900'}`}>
|
| 336 |
+
Emotions We Detect
|
| 337 |
+
</h2>
|
| 338 |
+
<div className="space-y-3">
|
| 339 |
+
{Object.entries(emotionConfig).map(([emotion, config]) => (
|
| 340 |
+
<div key={emotion} className="flex items-center space-x-3">
|
| 341 |
+
<div className={`w-10 h-10 rounded-lg bg-gradient-to-r ${config.gradient} flex items-center justify-center text-xl`}>
|
| 342 |
+
{config.emoji}
|
| 343 |
+
</div>
|
| 344 |
+
<div>
|
| 345 |
+
<p className={`font-medium capitalize ${isDark ? 'text-white' : 'text-gray-900'}`}>
|
| 346 |
+
{emotion}
|
| 347 |
+
</p>
|
| 348 |
+
</div>
|
| 349 |
+
</div>
|
| 350 |
+
))}
|
| 351 |
+
</div>
|
| 352 |
+
</div>
|
| 353 |
+
|
| 354 |
+
{/* Info Card */}
|
| 355 |
+
<div className={`rounded-2xl border-2 p-6 text-white overflow-hidden ${isDark ? 'bg-gradient-to-br from-fuchsia-900 to-purple-900 border-fuchsia-600' : 'bg-gradient-to-br from-orange-500 to-red-600 border-orange-400'}`}>
|
| 356 |
+
<h3 className="font-semibold mb-2">About MoodFlix</h3>
|
| 357 |
+
<p className="text-sm text-white/90">
|
| 358 |
+
AI-powered emotion detection meets cinema. Share your feelings and discover movies that match your mood. Powered by DeBERTa v3 and TMDB.
|
| 359 |
+
</p>
|
| 360 |
+
</div>
|
| 361 |
+
</div>
|
| 362 |
+
</div>
|
| 363 |
+
</div>
|
| 364 |
+
|
| 365 |
+
<style jsx>{`
|
| 366 |
+
@keyframes fadeIn {
|
| 367 |
+
from {
|
| 368 |
+
opacity: 0;
|
| 369 |
+
transform: translateY(10px);
|
| 370 |
+
}
|
| 371 |
+
to {
|
| 372 |
+
opacity: 1;
|
| 373 |
+
transform: translateY(0);
|
| 374 |
+
}
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
.animate-fadeIn {
|
| 378 |
+
animation: fadeIn 0.3s ease-out;
|
| 379 |
+
}
|
| 380 |
+
`}</style>
|
| 381 |
+
</div>
|
| 382 |
+
);
|
| 383 |
+
};
|
| 384 |
+
|
| 385 |
+
export default EmotionDetector;
|
app/frontend/src/assets/react.svg
ADDED
|
|
app/frontend/src/components/MovieCard.jsx
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import React from 'react';
|
| 2 |
+
import { Star, Calendar } from 'lucide-react';
|
| 3 |
+
|
| 4 |
+
const MovieCard = ({ movie, isDark = false }) => {
|
| 5 |
+
const posterUrl = movie.poster_path
|
| 6 |
+
? `https://image.tmdb.org/t/p/w500${movie.poster_path}`
|
| 7 |
+
: 'https://via.placeholder.com/300x450?text=No+Image';
|
| 8 |
+
|
| 9 |
+
const releaseYear = movie.release_date
|
| 10 |
+
? new Date(movie.release_date).getFullYear()
|
| 11 |
+
: 'N/A';
|
| 12 |
+
|
| 13 |
+
return (
|
| 14 |
+
<div
|
| 15 |
+
className={`flex-shrink-0 w-40 rounded-lg overflow-hidden shadow-lg transform transition-all duration-300 hover:scale-105 hover:shadow-2xl cursor-pointer ${
|
| 16 |
+
isDark
|
| 17 |
+
? 'bg-gray-800 border border-purple-600'
|
| 18 |
+
: 'bg-white border border-yellow-300'
|
| 19 |
+
}`}
|
| 20 |
+
>
|
| 21 |
+
{/* Poster Image */}
|
| 22 |
+
<div className="relative overflow-hidden h-64 bg-gradient-to-br from-gray-300 to-gray-400">
|
| 23 |
+
<img
|
| 24 |
+
src={posterUrl}
|
| 25 |
+
alt={movie.title}
|
| 26 |
+
className="w-full h-full object-cover"
|
| 27 |
+
loading="lazy"
|
| 28 |
+
/>
|
| 29 |
+
{/* Rating Badge */}
|
| 30 |
+
<div
|
| 31 |
+
className={`absolute top-2 right-2 flex items-center space-x-1 px-2 py-1 rounded-full backdrop-blur-sm ${
|
| 32 |
+
isDark
|
| 33 |
+
? 'bg-purple-600/90'
|
| 34 |
+
: 'bg-yellow-400/90'
|
| 35 |
+
}`}
|
| 36 |
+
>
|
| 37 |
+
<Star className="w-3 h-3 fill-current" />
|
| 38 |
+
<span className={`text-xs font-bold ${isDark ? 'text-white' : 'text-gray-900'}`}>
|
| 39 |
+
{movie.vote_average.toFixed(1)}
|
| 40 |
+
</span>
|
| 41 |
+
</div>
|
| 42 |
+
</div>
|
| 43 |
+
|
| 44 |
+
{/* Card Content */}
|
| 45 |
+
<div className={`p-3 ${isDark ? 'bg-gray-900' : 'bg-white'}`}>
|
| 46 |
+
{/* Title */}
|
| 47 |
+
<h3
|
| 48 |
+
className={`text-sm font-bold line-clamp-2 mb-2 ${
|
| 49 |
+
isDark ? 'text-white' : 'text-gray-900'
|
| 50 |
+
}`}
|
| 51 |
+
title={movie.title}
|
| 52 |
+
>
|
| 53 |
+
{movie.title}
|
| 54 |
+
</h3>
|
| 55 |
+
|
| 56 |
+
{/* Release Year */}
|
| 57 |
+
<div className="flex items-center space-x-1">
|
| 58 |
+
<Calendar className={`w-3 h-3 ${isDark ? 'text-purple-400' : 'text-yellow-600'}`} />
|
| 59 |
+
<span
|
| 60 |
+
className={`text-xs ${
|
| 61 |
+
isDark ? 'text-gray-400' : 'text-gray-600'
|
| 62 |
+
}`}
|
| 63 |
+
>
|
| 64 |
+
{releaseYear}
|
| 65 |
+
</span>
|
| 66 |
+
</div>
|
| 67 |
+
</div>
|
| 68 |
+
</div>
|
| 69 |
+
);
|
| 70 |
+
};
|
| 71 |
+
|
| 72 |
+
export default MovieCard;
|
app/frontend/src/components/MovieCarousel.jsx
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import React, { useRef } from 'react';
|
| 2 |
+
import { ChevronLeft, ChevronRight } from 'lucide-react';
|
| 3 |
+
import MovieCard from './MovieCard';
|
| 4 |
+
|
| 5 |
+
const MovieCarousel = ({ genre, movies, isDark = false }) => {
|
| 6 |
+
const scrollContainerRef = useRef(null);
|
| 7 |
+
|
| 8 |
+
const scroll = (direction) => {
|
| 9 |
+
if (scrollContainerRef.current) {
|
| 10 |
+
const scrollAmount = 400;
|
| 11 |
+
if (direction === 'left') {
|
| 12 |
+
scrollContainerRef.current.scrollBy({ left: -scrollAmount, behavior: 'smooth' });
|
| 13 |
+
} else {
|
| 14 |
+
scrollContainerRef.current.scrollBy({ left: scrollAmount, behavior: 'smooth' });
|
| 15 |
+
}
|
| 16 |
+
}
|
| 17 |
+
};
|
| 18 |
+
|
| 19 |
+
return (
|
| 20 |
+
<div
|
| 21 |
+
className={`rounded-xl overflow-hidden ${
|
| 22 |
+
isDark
|
| 23 |
+
? 'bg-gradient-to-r from-gray-900 via-purple-900 to-gray-900 border border-purple-700'
|
| 24 |
+
: 'bg-gradient-to-r from-yellow-50 via-green-50 to-yellow-50 border border-green-300'
|
| 25 |
+
}`}
|
| 26 |
+
>
|
| 27 |
+
{/* Genre Header */}
|
| 28 |
+
<div className={`px-6 py-4 flex items-center justify-between ${isDark ? 'bg-gray-800/50' : 'bg-green-100/50'}`}>
|
| 29 |
+
<h2
|
| 30 |
+
className={`text-2xl font-bold capitalize ${
|
| 31 |
+
isDark
|
| 32 |
+
? 'text-transparent bg-clip-text bg-gradient-to-r from-purple-400 to-pink-400'
|
| 33 |
+
: 'text-transparent bg-clip-text bg-gradient-to-r from-green-700 to-yellow-700'
|
| 34 |
+
}`}
|
| 35 |
+
>
|
| 36 |
+
{genre}
|
| 37 |
+
</h2>
|
| 38 |
+
<span
|
| 39 |
+
className={`text-sm font-semibold px-3 py-1 rounded-full ${
|
| 40 |
+
isDark ? 'bg-purple-600 text-white' : 'bg-yellow-300 text-gray-900'
|
| 41 |
+
}`}
|
| 42 |
+
>
|
| 43 |
+
{movies.length} movies
|
| 44 |
+
</span>
|
| 45 |
+
</div>
|
| 46 |
+
|
| 47 |
+
{/* Carousel Container */}
|
| 48 |
+
<div className="relative group">
|
| 49 |
+
{/* Left Arrow */}
|
| 50 |
+
<button
|
| 51 |
+
onClick={() => scroll('left')}
|
| 52 |
+
className={`absolute left-2 top-1/2 -translate-y-1/2 z-10 p-2 rounded-full opacity-0 group-hover:opacity-100 transform transition-all duration-300 ${
|
| 53 |
+
isDark
|
| 54 |
+
? 'bg-purple-600 hover:bg-purple-700 text-white'
|
| 55 |
+
: 'bg-yellow-400 hover:bg-yellow-500 text-gray-900'
|
| 56 |
+
}`}
|
| 57 |
+
>
|
| 58 |
+
<ChevronLeft className="w-5 h-5" />
|
| 59 |
+
</button>
|
| 60 |
+
|
| 61 |
+
{/* Scrollable Container */}
|
| 62 |
+
<div
|
| 63 |
+
ref={scrollContainerRef}
|
| 64 |
+
className="flex gap-4 overflow-x-auto scroll-smooth px-6 py-4 scrollbar-hide"
|
| 65 |
+
style={{ scrollBehavior: 'smooth', scrollbarWidth: 'none', msOverflowStyle: 'none' }}
|
| 66 |
+
>
|
| 67 |
+
{movies.map((movie) => (
|
| 68 |
+
<MovieCard key={movie.id} movie={movie} isDark={isDark} />
|
| 69 |
+
))}
|
| 70 |
+
</div>
|
| 71 |
+
|
| 72 |
+
{/* Right Arrow */}
|
| 73 |
+
<button
|
| 74 |
+
onClick={() => scroll('right')}
|
| 75 |
+
className={`absolute right-2 top-1/2 -translate-y-1/2 z-10 p-2 rounded-full opacity-0 group-hover:opacity-100 transform transition-all duration-300 ${
|
| 76 |
+
isDark
|
| 77 |
+
? 'bg-purple-600 hover:bg-purple-700 text-white'
|
| 78 |
+
: 'bg-yellow-400 hover:bg-yellow-500 text-gray-900'
|
| 79 |
+
}`}
|
| 80 |
+
>
|
| 81 |
+
<ChevronRight className="w-5 h-5" />
|
| 82 |
+
</button>
|
| 83 |
+
</div>
|
| 84 |
+
|
| 85 |
+
{/* Custom Scrollbar Hide */}
|
| 86 |
+
<style jsx>{`
|
| 87 |
+
div::-webkit-scrollbar {
|
| 88 |
+
display: none;
|
| 89 |
+
}
|
| 90 |
+
`}</style>
|
| 91 |
+
</div>
|
| 92 |
+
);
|
| 93 |
+
};
|
| 94 |
+
|
| 95 |
+
export default MovieCarousel;
|
app/frontend/src/index.css
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/* src/index.css (New Way for Tailwind v4) */
|
| 2 |
+
@import "tailwindcss";
|
app/frontend/src/main.jsx
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import React from 'react'
|
| 2 |
+
import ReactDOM from 'react-dom/client'
|
| 3 |
+
import App from './App.jsx'
|
| 4 |
+
import './index.css'
|
| 5 |
+
|
| 6 |
+
ReactDOM.createRoot(document.getElementById('root')).render(
|
| 7 |
+
<React.StrictMode>
|
| 8 |
+
<App />
|
| 9 |
+
</React.StrictMode>,
|
| 10 |
+
)
|
app/frontend/tailwind.config.js
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/** @type {import('tailwindcss').Config} */
|
| 2 |
+
module.exports = {
|
| 3 |
+
content: [
|
| 4 |
+
"./src/**/*.{js,jsx,ts,tsx}",
|
| 5 |
+
"./public/index.html"
|
| 6 |
+
],
|
| 7 |
+
theme: {
|
| 8 |
+
extend: {},
|
| 9 |
+
},
|
| 10 |
+
plugins: [],
|
| 11 |
+
}
|
app/frontend/vite.config.js
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import { defineConfig } from 'vite'
|
| 2 |
+
import react from '@vitejs/plugin-react'
|
| 3 |
+
|
| 4 |
+
export default defineConfig({
|
| 5 |
+
plugins: [react()],
|
| 6 |
+
server: {
|
| 7 |
+
port: 3000,
|
| 8 |
+
proxy: {
|
| 9 |
+
'/api': {
|
| 10 |
+
target: 'http://localhost:8000',
|
| 11 |
+
changeOrigin: true,
|
| 12 |
+
rewrite: (path) => path.replace(/^\/api/, '')
|
| 13 |
+
}
|
| 14 |
+
}
|
| 15 |
+
}
|
| 16 |
+
})
|