# Configuration Options This document discusses the various configuration options available for Aurora AI. ## Overview Aurora AI provides a comprehensive configuration framework supporting multi-tenancy, enterprise-grade security, and extensible integration patterns. The system employs a hierarchical configuration model with environment-specific overrides, schema validation, and runtime hot-reloading capabilities. ## Core Configuration Architecture ### Configuration Hierarchy Aurora AI implements a cascading configuration system with the following precedence order: 1. **Runtime overrides** - Programmatic configuration via API 2. **Environment variables** - System-level configuration with `AURORA_` prefix 3. **Configuration files** - YAML/JSON/TOML format files 4. **Default values** - Embedded fallback configuration ### Configuration File Structure ```yaml aurora: engine: inference_backend: "transformers" model_path: "/models/aurora-v3" device_map: "auto" quantization: enabled: true bits: 4 scheme: "gptq" runtime: max_concurrent_requests: 128 request_timeout_ms: 30000 graceful_shutdown_timeout: 60 ``` ## Model Configuration ### Inference Engine Parameters - **`model_path`**: Filesystem path or Hugging Face model identifier - **`device_map`**: Hardware allocation strategy (`auto`, `balanced`, `sequential`, or custom JSON mapping) - **`torch_dtype`**: Precision mode (`float32`, `float16`, `bfloat16`, `int8`, `int4`) - **`attention_implementation`**: Mechanism selection (`flash_attention_2`, `sdpa`, `eager`) - **`rope_scaling`**: Rotary Position Embedding interpolation configuration - **`kv_cache_dtype`**: Key-value cache quantization type ### Quantization Strategies Aurora AI supports multiple quantization backends: - **GPTQ**: 4-bit grouped quantization with calibration datasets - **AWQ**: Activation-aware weight quantization - **GGUF**: CPU-optimized quantization format - **BitsAndBytes**: Dynamic 8-bit and 4-bit quantization ## API Configuration ### REST API Settings ```yaml api: host: "0.0.0.0" port: 8080 workers: 4 uvicorn: loop: "uvloop" http: "httptools" log_level: "info" cors: enabled: true origins: ["https://*.example.com"] allow_credentials: true rate_limiting: enabled: true requests_per_minute: 60 burst_size: 10 ``` ### Authentication & Authorization - **API Key Authentication**: Header-based (`X-API-Key`) or query parameter - **OAuth 2.0**: Support for Authorization Code and Client Credentials flows - **JWT Tokens**: RS256/ES256 signature verification with JWKS endpoints - **mTLS**: Mutual TLS authentication for service-to-service communication ## Integration Patterns ### Vector Database Integration Aurora AI integrates with enterprise vector stores: ```yaml vector_store: provider: "pinecone" # or "weaviate", "qdrant", "milvus", "chromadb" connection: api_key: "${PINECONE_API_KEY}" environment: "us-west1-gcp" index_name: "aurora-embeddings" embedding: model: "text-embedding-3-large" dimensions: 3072 batch_size: 100 ``` ### Message Queue Integration Asynchronous processing via message brokers: - **RabbitMQ**: AMQP 0-9-1 protocol with exchange routing - **Apache Kafka**: High-throughput event streaming with consumer groups - **Redis Streams**: Lightweight pub/sub with consumer group support - **AWS SQS/SNS**: Cloud-native queue and notification services ### Observability Stack ```yaml observability: metrics: provider: "prometheus" port: 9090 path: "/metrics" tracing: provider: "opentelemetry" exporter: "otlp" endpoint: "http://jaeger:4317" sampling_rate: 0.1 logging: level: "INFO" format: "json" output: "stdout" ``` ## Memory Management ### Cache Configuration ```yaml cache: inference_cache: enabled: true backend: "redis" ttl_seconds: 3600 max_size_mb: 2048 prompt_cache: enabled: true strategy: "semantic_hash" similarity_threshold: 0.95 ``` ### Context Window Management - **Sliding Window**: Maintains fixed-size context with FIFO eviction - **Semantic Compression**: Entropy-based summarization for long contexts - **Hierarchical Attention**: Multi-level context representation - **External Memory**: Vector store-backed infinite context ## Distributed Deployment ### Kubernetes Configuration ```yaml deployment: replicas: 3 strategy: "RollingUpdate" resources: requests: cpu: "4000m" memory: "16Gi" nvidia.com/gpu: "1" limits: cpu: "8000m" memory: "32Gi" nvidia.com/gpu: "1" autoscaling: enabled: true min_replicas: 2 max_replicas: 10 target_cpu_utilization: 70 ``` ### Service Mesh Integration Aurora AI supports Istio, Linkerd, and Consul service mesh architectures with: - **Traffic management**: Weighted routing, circuit breaking, retries - **Security**: mTLS encryption, authorization policies - **Observability**: Distributed tracing, metrics aggregation ## Advanced Features ### Custom Plugin System ```yaml plugins: enabled: true plugin_path: "/opt/aurora/plugins" plugins: - name: "custom_tokenizer" module: "aurora.plugins.tokenizers" config: vocab_size: 65536 - name: "retrieval_augmentation" module: "aurora.plugins.rag" config: top_k: 5 rerank: true ``` ### Multi-Model Orchestration Configure model routing and ensemble strategies: - **Load-based routing**: Distribute requests based on model server load - **A/B testing**: Traffic splitting for model evaluation - **Cascade patterns**: Fallback to alternative models on failure - **Ensemble voting**: Aggregate predictions from multiple models ## Security Hardening - **Secrets management**: Integration with HashiCorp Vault, AWS Secrets Manager - **Network policies**: Zero-trust networking with pod security policies - **Input sanitization**: Prompt injection and jailbreak detection - **Output filtering**: PII redaction and content safety validation - **Audit logging**: Immutable logs with cryptographic verification