Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from copy import deepcopy | |
| from typing import Callable, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from mmcv.image import imread | |
| from mmengine.config import Config | |
| from mmengine.dataset import Compose, default_collate | |
| from mmpretrain.registry import TRANSFORMS | |
| from mmpretrain.structures import DataSample | |
| from .base import BaseInferencer | |
| from .model import list_models | |
| InputType = Tuple[Union[str, np.ndarray], Union[str, np.ndarray], str] | |
| InputsType = Union[List[InputType], InputType] | |
| class NLVRInferencer(BaseInferencer): | |
| """The inferencer for Natural Language for Visual Reasoning. | |
| Args: | |
| model (BaseModel | str | Config): A model name or a path to the config | |
| file, or a :obj:`BaseModel` object. The model name can be found | |
| by ``NLVRInferencer.list_models()`` and you can also | |
| query it in :doc:`/modelzoo_statistics`. | |
| pretrained (str, optional): Path to the checkpoint. If None, it will | |
| try to find a pre-defined weight from the model you specified | |
| (only work if the ``model`` is a model name). Defaults to None. | |
| device (str, optional): Device to run inference. If None, the available | |
| device will be automatically used. Defaults to None. | |
| **kwargs: Other keyword arguments to initialize the model (only work if | |
| the ``model`` is a model name). | |
| """ | |
| visualize_kwargs: set = { | |
| 'resize', 'draw_score', 'show', 'show_dir', 'wait_time' | |
| } | |
| def __call__(self, | |
| inputs: InputsType, | |
| return_datasamples: bool = False, | |
| batch_size: int = 1, | |
| **kwargs) -> dict: | |
| """Call the inferencer. | |
| Args: | |
| inputs (tuple, List[tuple]): The input data tuples, every tuple | |
| should include three items (left image, right image, text). | |
| The image can be a path or numpy array. | |
| return_datasamples (bool): Whether to return results as | |
| :obj:`DataSample`. Defaults to False. | |
| batch_size (int): Batch size. Defaults to 1. | |
| resize (int, optional): Resize the short edge of the image to the | |
| specified length before visualization. Defaults to None. | |
| draw_score (bool): Whether to draw the prediction scores | |
| of prediction categories. Defaults to True. | |
| show (bool): Whether to display the visualization result in a | |
| window. Defaults to False. | |
| wait_time (float): The display time (s). Defaults to 0, which means | |
| "forever". | |
| show_dir (str, optional): If not None, save the visualization | |
| results in the specified directory. Defaults to None. | |
| Returns: | |
| list: The inference results. | |
| """ | |
| assert isinstance(inputs, (tuple, list)) | |
| if isinstance(inputs, tuple): | |
| inputs = [inputs] | |
| for input_ in inputs: | |
| assert isinstance(input_, tuple) | |
| assert len(input_) == 3 | |
| return super().__call__( | |
| inputs, | |
| return_datasamples=return_datasamples, | |
| batch_size=batch_size, | |
| **kwargs) | |
| def _init_pipeline(self, cfg: Config) -> Callable: | |
| test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline | |
| assert test_pipeline_cfg[0]['type'] == 'ApplyToList' | |
| list_pipeline = deepcopy(test_pipeline_cfg[0]) | |
| if list_pipeline.scatter_key == 'img_path': | |
| # Remove `LoadImageFromFile` | |
| list_pipeline.transforms.pop(0) | |
| list_pipeline.scatter_key = 'img' | |
| test_pipeline = Compose( | |
| [TRANSFORMS.build(list_pipeline)] + | |
| [TRANSFORMS.build(t) for t in test_pipeline_cfg[1:]]) | |
| return test_pipeline | |
| def preprocess(self, inputs: InputsType, batch_size: int = 1): | |
| def load_image(input_): | |
| img1 = imread(input_[0]) | |
| img2 = imread(input_[1]) | |
| text = input_[2] | |
| if img1 is None: | |
| raise ValueError(f'Failed to read image {input_[0]}.') | |
| if img2 is None: | |
| raise ValueError(f'Failed to read image {input_[1]}.') | |
| return dict( | |
| img=[img1, img2], | |
| img_shape=[img1.shape[:2], img2.shape[:2]], | |
| ori_shape=[img1.shape[:2], img2.shape[:2]], | |
| text=text, | |
| ) | |
| pipeline = Compose([load_image, self.pipeline]) | |
| chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size) | |
| yield from map(default_collate, chunked_data) | |
| def postprocess(self, | |
| preds: List[DataSample], | |
| visualization: List[np.ndarray], | |
| return_datasamples=False) -> dict: | |
| if return_datasamples: | |
| return preds | |
| results = [] | |
| for data_sample in preds: | |
| pred_scores = data_sample.pred_score | |
| pred_score = float(torch.max(pred_scores).item()) | |
| pred_label = torch.argmax(pred_scores).item() | |
| result = { | |
| 'pred_scores': pred_scores.detach().cpu().numpy(), | |
| 'pred_label': pred_label, | |
| 'pred_score': pred_score, | |
| } | |
| results.append(result) | |
| return results | |
| def list_models(pattern: Optional[str] = None): | |
| """List all available model names. | |
| Args: | |
| pattern (str | None): A wildcard pattern to match model names. | |
| Returns: | |
| List[str]: a list of model names. | |
| """ | |
| return list_models(pattern=pattern, task='NLVR') | |