Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from pathlib import Path | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from mmcv.image import imread | |
| from mmengine.config import Config | |
| from mmengine.dataset import Compose, default_collate | |
| from mmpretrain.registry import TRANSFORMS | |
| from mmpretrain.structures import DataSample | |
| from .base import BaseInferencer, InputType, ModelType | |
| from .model import list_models | |
| class ImageClassificationInferencer(BaseInferencer): | |
| """The inferencer for image classification. | |
| Args: | |
| model (BaseModel | str | Config): A model name or a path to the config | |
| file, or a :obj:`BaseModel` object. The model name can be found | |
| by ``ImageClassificationInferencer.list_models()`` and you can also | |
| query it in :doc:`/modelzoo_statistics`. | |
| pretrained (str, optional): Path to the checkpoint. If None, it will | |
| try to find a pre-defined weight from the model you specified | |
| (only work if the ``model`` is a model name). Defaults to None. | |
| device (str, optional): Device to run inference. If None, the available | |
| device will be automatically used. Defaults to None. | |
| **kwargs: Other keyword arguments to initialize the model (only work if | |
| the ``model`` is a model name). | |
| Example: | |
| 1. Use a pre-trained model in MMPreTrain to inference an image. | |
| >>> from mmpretrain import ImageClassificationInferencer | |
| >>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k') | |
| >>> inferencer('demo/demo.JPEG') | |
| [{'pred_score': array([...]), | |
| 'pred_label': 65, | |
| 'pred_score': 0.6649367809295654, | |
| 'pred_class': 'sea snake'}] | |
| 2. Use a config file and checkpoint to inference multiple images on GPU, | |
| and save the visualization results in a folder. | |
| >>> from mmpretrain import ImageClassificationInferencer | |
| >>> inferencer = ImageClassificationInferencer( | |
| model='configs/resnet/resnet50_8xb32_in1k.py', | |
| pretrained='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth', | |
| device='cuda') | |
| >>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/") | |
| """ # noqa: E501 | |
| visualize_kwargs: set = { | |
| 'resize', 'rescale_factor', 'draw_score', 'show', 'show_dir', | |
| 'wait_time' | |
| } | |
| def __init__(self, | |
| model: ModelType, | |
| pretrained: Union[bool, str] = True, | |
| device: Union[str, torch.device, None] = None, | |
| classes=None, | |
| **kwargs) -> None: | |
| super().__init__( | |
| model=model, pretrained=pretrained, device=device, **kwargs) | |
| if classes is not None: | |
| self.classes = classes | |
| else: | |
| self.classes = getattr(self.model, '_dataset_meta', | |
| {}).get('classes') | |
| def __call__(self, | |
| inputs: InputType, | |
| return_datasamples: bool = False, | |
| batch_size: int = 1, | |
| **kwargs) -> dict: | |
| """Call the inferencer. | |
| Args: | |
| inputs (str | array | list): The image path or array, or a list of | |
| images. | |
| return_datasamples (bool): Whether to return results as | |
| :obj:`DataSample`. Defaults to False. | |
| batch_size (int): Batch size. Defaults to 1. | |
| resize (int, optional): Resize the short edge of the image to the | |
| specified length before visualization. Defaults to None. | |
| rescale_factor (float, optional): Rescale the image by the rescale | |
| factor for visualization. This is helpful when the image is too | |
| large or too small for visualization. Defaults to None. | |
| draw_score (bool): Whether to draw the prediction scores | |
| of prediction categories. Defaults to True. | |
| show (bool): Whether to display the visualization result in a | |
| window. Defaults to False. | |
| wait_time (float): The display time (s). Defaults to 0, which means | |
| "forever". | |
| show_dir (str, optional): If not None, save the visualization | |
| results in the specified directory. Defaults to None. | |
| Returns: | |
| list: The inference results. | |
| """ | |
| return super().__call__( | |
| inputs, | |
| return_datasamples=return_datasamples, | |
| batch_size=batch_size, | |
| **kwargs) | |
| def _init_pipeline(self, cfg: Config) -> Callable: | |
| test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline | |
| from mmpretrain.datasets import remove_transform | |
| # Image loading is finished in `self.preprocess`. | |
| test_pipeline_cfg = remove_transform(test_pipeline_cfg, | |
| 'LoadImageFromFile') | |
| test_pipeline = Compose( | |
| [TRANSFORMS.build(t) for t in test_pipeline_cfg]) | |
| return test_pipeline | |
| def preprocess(self, inputs: List[InputType], batch_size: int = 1): | |
| def load_image(input_): | |
| img = imread(input_) | |
| if img is None: | |
| raise ValueError(f'Failed to read image {input_}.') | |
| return dict( | |
| img=img, | |
| img_shape=img.shape[:2], | |
| ori_shape=img.shape[:2], | |
| ) | |
| pipeline = Compose([load_image, self.pipeline]) | |
| chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size) | |
| yield from map(default_collate, chunked_data) | |
| def visualize(self, | |
| ori_inputs: List[InputType], | |
| preds: List[DataSample], | |
| show: bool = False, | |
| wait_time: int = 0, | |
| resize: Optional[int] = None, | |
| rescale_factor: Optional[float] = None, | |
| draw_score=True, | |
| show_dir=None): | |
| if not show and show_dir is None: | |
| return None | |
| if self.visualizer is None: | |
| from mmpretrain.visualization import UniversalVisualizer | |
| self.visualizer = UniversalVisualizer() | |
| visualization = [] | |
| for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)): | |
| image = imread(input_) | |
| if isinstance(input_, str): | |
| # The image loaded from path is BGR format. | |
| image = image[..., ::-1] | |
| name = Path(input_).stem | |
| else: | |
| name = str(i) | |
| if show_dir is not None: | |
| show_dir = Path(show_dir) | |
| show_dir.mkdir(exist_ok=True) | |
| out_file = str((show_dir / name).with_suffix('.png')) | |
| else: | |
| out_file = None | |
| self.visualizer.visualize_cls( | |
| image, | |
| data_sample, | |
| classes=self.classes, | |
| resize=resize, | |
| show=show, | |
| wait_time=wait_time, | |
| rescale_factor=rescale_factor, | |
| draw_gt=False, | |
| draw_pred=True, | |
| draw_score=draw_score, | |
| name=name, | |
| out_file=out_file) | |
| visualization.append(self.visualizer.get_image()) | |
| if show: | |
| self.visualizer.close() | |
| return visualization | |
| def postprocess(self, | |
| preds: List[DataSample], | |
| visualization: List[np.ndarray], | |
| return_datasamples=False) -> dict: | |
| if return_datasamples: | |
| return preds | |
| results = [] | |
| for data_sample in preds: | |
| pred_scores = data_sample.pred_score | |
| pred_score = float(torch.max(pred_scores).item()) | |
| pred_label = torch.argmax(pred_scores).item() | |
| result = { | |
| 'pred_scores': pred_scores.detach().cpu().numpy(), | |
| 'pred_label': pred_label, | |
| 'pred_score': pred_score, | |
| } | |
| if self.classes is not None: | |
| result['pred_class'] = self.classes[pred_label] | |
| results.append(result) | |
| return results | |
| def list_models(pattern: Optional[str] = None): | |
| """List all available model names. | |
| Args: | |
| pattern (str | None): A wildcard pattern to match model names. | |
| Returns: | |
| List[str]: a list of model names. | |
| """ | |
| return list_models(pattern=pattern, task='Image Classification') | |