File size: 10,114 Bytes
6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 33d471c 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 a67632f 5a13ec5 6eb55db 5a13ec5 6eb55db 72a1da1 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db a67632f 8984ed3 a67632f 8984ed3 5a13ec5 a67632f 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6eb55db 5a13ec5 6bf54ed 6eb55db 5a13ec5 6eb55db d2acffe 6eb55db 5a13ec5 6eb55db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import gradio as gr
import os
import warnings
so_path = "models/GroundingDINO/ops/MultiScaleDeformableAttention.cpython-39-x86_64-linux-gnu.so"
if not os.path.exists(so_path):
os.system("python models/GroundingDINO/ops/setup.py build_ext develop --user")
import torchvision.transforms as T
from models import build_model
import torch
import misc as utils
import numpy as np
import torch.nn.functional as F
from torchvision.io import read_video
import torchvision.transforms.functional as Func
from ruamel.yaml import YAML
from easydict import EasyDict
from misc import nested_tensor_from_videos_list
from torch.cuda.amp import autocast
from PIL import Image, ImageDraw
import imageio.v3 as iio
import cv2
import tempfile
import argparse
import time
from huggingface_hub import hf_hub_download
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DURATION = 6
CHECKPOINT = "ryt_mevis_swinb.pth"
# Transform for video frames
transform = T.Compose([
T.Resize(360),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Colormap
color_list = utils.colormap()
color_list = color_list.astype('uint8').tolist()
# Global model variable
model = None
def load_model_once(config_path, device='cpu'):
"""Load model once at startup"""
global model
if model is None:
# Create args object for model loading
with open(config_path) as f:
yaml = YAML(typ='safe', pure=True)
config = yaml.load(f)
config = {k: v['value'] for k, v in config.items()}
args = EasyDict(config)
args.device = device
model = build_model(args)
model.to(device)
cache_file = hf_hub_download(repo_id="liangtm/referdino", filename=CHECKPOINT)
# cache_file = 'ckpt/' + CHECKPOINT
checkpoint = torch.load(cache_file, map_location='cpu')
state_dict = checkpoint["model_state_dict"]
model.load_state_dict(state_dict, strict=False)
model.eval()
print("Model loaded successfully!")
return model
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x[:, 0], x[:, 1], x[:, 2], x[:, 3]
b = np.stack([
x_c - 0.5 * w,
y_c - 0.5 * h,
x_c + 0.5 * w,
y_c + 0.5 * h
], axis=1)
return b
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * np.array([img_w, img_h, img_w, img_h], dtype=np.float32)
return b
def vis_add_mask(img, mask, color, edge_width=3):
origin_img = np.asarray(img.convert('RGB')).copy()
color = np.array(color)
mask = mask.reshape(mask.shape[0], mask.shape[1]).astype('uint8')
mask = mask > 0.5
# Increase the edge width using dilation
kernel = np.ones((edge_width, edge_width), np.uint8)
mask_dilated = cv2.dilate(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
edge_mask = mask_dilated & ~mask
origin_img[mask] = origin_img[mask] * 0.5 + color * 0.5
origin_img[edge_mask] = color
origin_img = Image.fromarray(origin_img)
return origin_img
def run_video_inference(input_video, text_prompt, tracking_alpha=0.1, fps=15):
"""Main inference function for Gradio"""
global model
model.tracking_alpha = tracking_alpha
# Set default values for other parameters
show_box = True
mask_edge_width = 6
if input_video is None:
return None, "Please upload a video file."
if not text_prompt or text_prompt.strip() == "":
return None, "Please enter a text prompt."
# Process text prompt
exp = " ".join(text_prompt.lower().split())
# Read video
video_frames, _, info = read_video(input_video, end_pts=DURATION, pts_unit='sec') # (T, H, W, C)
frame_step = max(round(info['video_fps'] / fps), 1)
frames = []
for i in range(0, len(video_frames), frame_step):
source_frame = Func.to_pil_image(video_frames[i].permute(2, 0, 1))
frames.append(source_frame)
video_len = len(frames)
if video_len == 0:
return None, "No frames found in the video."
frames_ids = [x for x in range(video_len)]
imgs = []
for t in frames_ids:
img = frames[t]
origin_w, origin_h = img.size
imgs.append(transform(img))
device = next(model.parameters()).device
imgs = torch.stack(imgs, dim=0).to(device)
samples = nested_tensor_from_videos_list(imgs[None], size_divisibility=16)
img_h, img_w = imgs.shape[-2:]
size = torch.as_tensor([int(img_h), int(img_w)]).to(device)
target = {"size": size}
start_infer = time.time()
# Run inference
with torch.no_grad():
with autocast(True):
outputs = model(samples, [exp], [target])
end_infer = time.time()
pred_logits = outputs["pred_logits"][0] # [t, q, k]
pred_masks = outputs["pred_masks"][0] # [t, q, h, w]
pred_boxes = outputs["pred_boxes"][0] # [t, q, 4]
# Select the query index according to pred_logits
pred_scores = pred_logits.sigmoid() # [t, q, k]
pred_scores = pred_scores.mean(0) # [q, K]
max_scores, _ = pred_scores.max(-1) # [q,]
_, max_ind = max_scores.max(-1) # [1,]
max_inds = max_ind.repeat(video_len)
pred_masks = pred_masks[range(video_len), max_inds, ...] # [t, h, w]
pred_masks = pred_masks.unsqueeze(0)
pred_boxes = pred_boxes[range(video_len), max_inds].cpu().numpy() # [t, 4]
# Unpad and resize
pred_masks = pred_masks[:, :, :img_h, :img_w].cpu()
pred_masks = F.interpolate(pred_masks, size=(origin_h, origin_w), mode='bilinear', align_corners=False)
pred_masks = (pred_masks.sigmoid() > 0.5).squeeze(0).cpu().numpy()
# Visualization
color = np.array([220, 20, 60], dtype=np.uint8)
start_save = time.time()
save_imgs = []
for t, img in enumerate(frames):
# Draw mask
img = vis_add_mask(img, pred_masks[t], color, mask_edge_width)
draw = ImageDraw.Draw(img)
draw_boxes = pred_boxes[t][None]
draw_boxes = rescale_bboxes(draw_boxes, (origin_w, origin_h)).tolist()
# Draw box if enabled
if show_box:
xmin, ymin, xmax, ymax = draw_boxes[0]
draw.rectangle(((xmin, ymin), (xmax, ymax)), outline=tuple(color), width=5)
save_imgs.append(np.asarray(img).copy())
# Save result video
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
iio.imwrite(tmp_file.name, save_imgs, fps=fps)
result_video_path = tmp_file.name
end_save = time.time()
status = (
f"Inference Time: {(end_infer - start_infer):.1f}s\n"
f"Saving Time: {(end_save - start_save):.1f}s"
)
return result_video_path, status
def main():
# Configuration
config_path = "configs/ytvos_swinb.yaml" # Update this path
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
# Load model at startup
print("Loading model...")
load_model_once(config_path, device)
print(f"Model loaded on device: {device}")
# Create Gradio interface
with gr.Blocks(
title="ReferDINO",
css="""
#hero { text-align: center; }
#hero h1, #hero h2, #hero h3, #hero p {
text-align: center !important;
margin: 0.25rem 0;
}
"""
) as demo:
gr.Markdown(
"""
<h1>Referring Video Object Segmentation with
<a href="https://github.com/iSEE-Laboratory/ReferDINO">ReferDINO</a>
</h1>
<h3>Note that this demo runs on CPU, so the video will be trimmed to β€6 seconds.</h3>
""",
elem_id="hero",
)
with gr.Row():
with gr.Column(scale=1):
# Input components
input_video = gr.Video(
label="πΉ Upload Video",
height=300
)
text_prompt = gr.Textbox(
label="π Text Description",
placeholder="Describe the object you want to segment (e.g., 'red car', 'person in blue shirt')",
lines=2
)
run_button = gr.Button(
"π Run Inference",
variant="primary",
size="lg"
)
tracking_alpha = gr.Slider(
label="Momentum",
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
info="controls the memory updating (lower = longer memory)"
)
target_fps = gr.Slider(
label="FPS",
minimum=1,
maximum=30,
value=10,
step=1,
info="controls the FPS (lower = faster processing)"
)
with gr.Column(scale=1):
output_video = gr.Video(
label="π― Segmentation Result",
height=400
)
status_text = gr.Textbox(
label="π Status",
lines=3,
interactive=False
)
# Examples
gr.Examples(
examples=[
["dogs.mp4", "the dog is drinking water", 0.1, 10],
["dogs.mp4", "the dog is sleeping", 0.1, 10],
],
inputs=[input_video, text_prompt, tracking_alpha, target_fps],
outputs=[output_video],
fn=run_video_inference,
cache_examples=False,
label="π Try these examples:"
)
# Event handlers
run_button.click(
fn=run_video_inference,
inputs=[input_video, text_prompt, tracking_alpha, target_fps],
outputs=[output_video, status_text],
show_progress=True
)
return demo
if __name__ == "__main__":
demo = main()
demo.launch(
show_api=False,
show_error=True
) |