Spaces:
Running
on
Zero
Running
on
Zero
| import os.path as osp | |
| import os | |
| import numpy as np | |
| import sys | |
| sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) | |
| import h5py | |
| from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset | |
| from dust3r.utils.image import imread_cv2 | |
| class Waymo_Multi(BaseMultiViewDataset): | |
| """Dataset of outdoor street scenes, 5 images each time""" | |
| def __init__(self, *args, ROOT, **kwargs): | |
| self.ROOT = ROOT | |
| self.max_interval = 8 | |
| self.video = True | |
| self.is_metric = True | |
| super().__init__(*args, **kwargs) | |
| assert self.split is None | |
| self._load_data() | |
| def load_invalid_dict(self, h5_file_path): | |
| invalid_dict = {} | |
| with h5py.File(h5_file_path, "r") as h5f: | |
| for scene in h5f: | |
| data = h5f[scene]["invalid_pairs"][:] | |
| invalid_pairs = set( | |
| tuple(pair.decode("utf-8").split("_")) for pair in data | |
| ) | |
| invalid_dict[scene] = invalid_pairs | |
| return invalid_dict | |
| def _load_data(self): | |
| invalid_dict = self.load_invalid_dict( | |
| os.path.join(self.ROOT, "invalid_files.h5") | |
| ) | |
| scene_dirs = sorted( | |
| [ | |
| d | |
| for d in os.listdir(self.ROOT) | |
| if os.path.isdir(os.path.join(self.ROOT, d)) | |
| ] | |
| ) | |
| offset = 0 | |
| scenes = [] | |
| sceneids = [] | |
| images = [] | |
| start_img_ids = [] | |
| scene_img_list = [] | |
| is_video = [] | |
| j = 0 | |
| for scene in scene_dirs: | |
| scene_dir = osp.join(self.ROOT, scene) | |
| invalid_pairs = invalid_dict.get(scene, set()) | |
| seq2frames = {} | |
| for f in os.listdir(scene_dir): | |
| if not f.endswith(".jpg"): | |
| continue | |
| basename = f[:-4] | |
| frame_id = basename.split("_")[0] | |
| seq_id = basename.split("_")[1] | |
| if seq_id == "5": | |
| continue | |
| if (seq_id, frame_id) in invalid_pairs: | |
| continue # Skip invalid files | |
| if seq_id not in seq2frames: | |
| seq2frames[seq_id] = [] | |
| seq2frames[seq_id].append(frame_id) | |
| for seq_id, frame_ids in seq2frames.items(): | |
| frame_ids = sorted(frame_ids) | |
| num_imgs = len(frame_ids) | |
| img_ids = list(np.arange(num_imgs) + offset) | |
| cut_off = ( | |
| self.num_views | |
| if not self.allow_repeat | |
| else max(self.num_views // 3, 3) | |
| ) | |
| start_img_ids_ = img_ids[: num_imgs - cut_off + 1] | |
| if num_imgs < cut_off: | |
| print(f"Skipping {scene}_{seq_id}") | |
| continue | |
| scenes.append((scene, seq_id)) | |
| sceneids.extend([j] * num_imgs) | |
| images.extend(frame_ids) | |
| start_img_ids.extend(start_img_ids_) | |
| scene_img_list.append(img_ids) | |
| offset += num_imgs | |
| j += 1 | |
| self.scenes = scenes | |
| self.sceneids = sceneids | |
| self.images = images | |
| self.start_img_ids = start_img_ids | |
| self.scene_img_list = scene_img_list | |
| self.is_video = is_video | |
| def __len__(self): | |
| return len(self.start_img_ids) | |
| def get_image_num(self): | |
| return len(self.images) | |
| def get_stats(self): | |
| return f"{len(self)} groups of views" | |
| def _get_views(self, idx, resolution, rng, num_views): | |
| start_id = self.start_img_ids[idx] | |
| all_image_ids = self.scene_img_list[self.sceneids[start_id]] | |
| _, seq_id = self.scenes[self.sceneids[start_id]] | |
| max_interval = self.max_interval // 2 if seq_id == "4" else self.max_interval | |
| pos, ordered_video = self.get_seq_from_start_id( | |
| num_views, | |
| start_id, | |
| all_image_ids, | |
| rng, | |
| max_interval=max_interval, | |
| video_prob=0.9, | |
| fix_interval_prob=0.9, | |
| block_shuffle=16, | |
| ) | |
| image_idxs = np.array(all_image_ids)[pos] | |
| views = [] | |
| ordered_video = True | |
| views = [] | |
| for v, view_idx in enumerate(image_idxs): | |
| scene_id = self.sceneids[view_idx] | |
| scene_dir, seq_id = self.scenes[scene_id] | |
| scene_dir = osp.join(self.ROOT, scene_dir) | |
| frame_id = self.images[view_idx] | |
| impath = f"{frame_id}_{seq_id}" | |
| image = imread_cv2(osp.join(scene_dir, impath + ".jpg")) | |
| depthmap = imread_cv2(osp.join(scene_dir, impath + ".exr")) | |
| camera_params = np.load(osp.join(scene_dir, impath + ".npz")) | |
| intrinsics = np.float32(camera_params["intrinsics"]) | |
| camera_pose = np.float32(camera_params["cam2world"]) | |
| image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
| image, depthmap, intrinsics, resolution, rng, info=(scene_dir, impath) | |
| ) | |
| # generate img mask and raymap mask | |
| img_mask, ray_mask = self.get_img_and_ray_masks( | |
| self.is_metric, v, rng, p=[0.85, 0.10, 0.05] | |
| ) | |
| views.append( | |
| dict( | |
| img=image, | |
| depthmap=depthmap, | |
| camera_pose=camera_pose, # cam2world | |
| camera_intrinsics=intrinsics, | |
| dataset="Waymo", | |
| label=osp.relpath(scene_dir, self.ROOT), | |
| is_metric=self.is_metric, | |
| instance=osp.join(scene_dir, impath + ".jpg"), | |
| is_video=ordered_video, | |
| quantile=np.array(0.98, dtype=np.float32), | |
| img_mask=img_mask, | |
| ray_mask=ray_mask, | |
| camera_only=False, | |
| depth_only=False, | |
| single_view=False, | |
| reset=False, | |
| ) | |
| ) | |
| return views | |