Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # croppping utilities | |
| # -------------------------------------------------------- | |
| import PIL.Image | |
| import os | |
| os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" | |
| import cv2 # noqa | |
| import numpy as np # noqa | |
| from dust3r.utils.geometry import ( | |
| colmap_to_opencv_intrinsics, | |
| opencv_to_colmap_intrinsics, | |
| ) # noqa | |
| try: | |
| lanczos = PIL.Image.Resampling.LANCZOS | |
| bicubic = PIL.Image.Resampling.BICUBIC | |
| except AttributeError: | |
| lanczos = PIL.Image.LANCZOS | |
| bicubic = PIL.Image.BICUBIC | |
| class ImageList: | |
| """Convenience class to aply the same operation to a whole set of images.""" | |
| def __init__(self, images): | |
| if not isinstance(images, (tuple, list, set)): | |
| images = [images] | |
| self.images = [] | |
| for image in images: | |
| if not isinstance(image, PIL.Image.Image): | |
| image = PIL.Image.fromarray(image) | |
| self.images.append(image) | |
| def __len__(self): | |
| return len(self.images) | |
| def to_pil(self): | |
| return tuple(self.images) if len(self.images) > 1 else self.images[0] | |
| def size(self): | |
| sizes = [im.size for im in self.images] | |
| assert all(sizes[0] == s for s in sizes) | |
| return sizes[0] | |
| def resize(self, *args, **kwargs): | |
| return ImageList(self._dispatch("resize", *args, **kwargs)) | |
| def crop(self, *args, **kwargs): | |
| return ImageList(self._dispatch("crop", *args, **kwargs)) | |
| def _dispatch(self, func, *args, **kwargs): | |
| return [getattr(im, func)(*args, **kwargs) for im in self.images] | |
| def rescale_image_depthmap( | |
| image, depthmap, camera_intrinsics, output_resolution, force=True | |
| ): | |
| """Jointly rescale a (image, depthmap) | |
| so that (out_width, out_height) >= output_res | |
| """ | |
| image = ImageList(image) | |
| input_resolution = np.array(image.size) # (W,H) | |
| output_resolution = np.array(output_resolution) | |
| if depthmap is not None: | |
| # can also use this with masks instead of depthmaps | |
| assert tuple(depthmap.shape[:2]) == image.size[::-1] | |
| # define output resolution | |
| assert output_resolution.shape == (2,) | |
| scale_final = max(output_resolution / image.size) + 1e-8 | |
| if scale_final >= 1 and not force: # image is already smaller than what is asked | |
| return (image.to_pil(), depthmap, camera_intrinsics) | |
| output_resolution = np.floor(input_resolution * scale_final).astype(int) | |
| # first rescale the image so that it contains the crop | |
| image = image.resize( | |
| output_resolution, resample=lanczos if scale_final < 1 else bicubic | |
| ) | |
| if depthmap is not None: | |
| depthmap = cv2.resize( | |
| depthmap, | |
| output_resolution, | |
| fx=scale_final, | |
| fy=scale_final, | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| # no offset here; simple rescaling | |
| camera_intrinsics = camera_matrix_of_crop( | |
| camera_intrinsics, input_resolution, output_resolution, scaling=scale_final | |
| ) | |
| return image.to_pil(), depthmap, camera_intrinsics | |
| def camera_matrix_of_crop( | |
| input_camera_matrix, | |
| input_resolution, | |
| output_resolution, | |
| scaling=1, | |
| offset_factor=0.5, | |
| offset=None, | |
| ): | |
| # Margins to offset the origin | |
| margins = np.asarray(input_resolution) * scaling - output_resolution | |
| assert np.all(margins >= 0.0) | |
| if offset is None: | |
| offset = offset_factor * margins | |
| # Generate new camera parameters | |
| output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix) | |
| output_camera_matrix_colmap[:2, :] *= scaling | |
| output_camera_matrix_colmap[:2, 2] -= offset | |
| output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap) | |
| return output_camera_matrix | |
| def crop_image_depthmap(image, depthmap, camera_intrinsics, crop_bbox): | |
| """ | |
| Return a crop of the input view. | |
| """ | |
| image = ImageList(image) | |
| l, t, r, b = crop_bbox | |
| image = image.crop((l, t, r, b)) | |
| depthmap = depthmap[t:b, l:r] | |
| camera_intrinsics = camera_intrinsics.copy() | |
| camera_intrinsics[0, 2] -= l | |
| camera_intrinsics[1, 2] -= t | |
| return image.to_pil(), depthmap, camera_intrinsics | |
| def bbox_from_intrinsics_in_out( | |
| input_camera_matrix, output_camera_matrix, output_resolution | |
| ): | |
| out_width, out_height = output_resolution | |
| l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2])) | |
| crop_bbox = (l, t, l + out_width, t + out_height) | |
| return crop_bbox | |