Spaces:
Running
on
Zero
Running
on
Zero
| import os.path as osp | |
| import os | |
| import sys | |
| import itertools | |
| sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) | |
| import cv2 | |
| import numpy as np | |
| from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset | |
| from dust3r.utils.image import imread_cv2 | |
| def stratified_sampling(indices, num_samples, rng=None): | |
| if num_samples > len(indices): | |
| raise ValueError("num_samples cannot exceed the number of available indices.") | |
| elif num_samples == len(indices): | |
| return indices | |
| sorted_indices = sorted(indices) | |
| stride = len(sorted_indices) / num_samples | |
| sampled_indices = [] | |
| if rng is None: | |
| rng = np.random.default_rng() | |
| for i in range(num_samples): | |
| start = int(i * stride) | |
| end = int((i + 1) * stride) | |
| # Ensure end does not exceed the list | |
| end = min(end, len(sorted_indices)) | |
| if start < end: | |
| # Randomly select within the current stratum | |
| rand_idx = rng.integers(start, end) | |
| sampled_indices.append(sorted_indices[rand_idx]) | |
| else: | |
| # In case of any rounding issues, select the last index | |
| sampled_indices.append(sorted_indices[-1]) | |
| return rng.permutation(sampled_indices) | |
| class ARKitScenes_Multi(BaseMultiViewDataset): | |
| def __init__(self, *args, split, ROOT, **kwargs): | |
| self.ROOT = ROOT | |
| self.video = True | |
| self.is_metric = True | |
| self.max_interval = 8 | |
| super().__init__(*args, **kwargs) | |
| if split == "train": | |
| self.split = "Training" | |
| elif split == "test": | |
| self.split = "Test" | |
| else: | |
| raise ValueError("") | |
| self.loaded_data = self._load_data(self.split) | |
| def _load_data(self, split): | |
| with np.load(osp.join(self.ROOT, split, "all_metadata.npz")) as data: | |
| self.scenes: np.ndarray = data["scenes"] | |
| high_res_list = np.array( | |
| [ | |
| d | |
| for d in os.listdir( | |
| os.path.join( | |
| self.ROOT.rstrip("/") + "_highres", | |
| split if split == "Training" else "Validation", | |
| ) | |
| ) | |
| if os.path.join(self.ROOT + "_highres", split, d) | |
| ] | |
| ) | |
| self.scenes = np.setdiff1d(self.scenes, high_res_list) | |
| offset = 0 | |
| counts = [] | |
| scenes = [] | |
| sceneids = [] | |
| images = [] | |
| intrinsics = [] | |
| trajectories = [] | |
| groups = [] | |
| id_ranges = [] | |
| j = 0 | |
| for scene_idx, scene in enumerate(self.scenes): | |
| scene_dir = osp.join(self.ROOT, self.split, scene) | |
| with np.load( | |
| osp.join(scene_dir, "new_scene_metadata.npz"), allow_pickle=True | |
| ) as data: | |
| imgs = data["images"] | |
| intrins = data["intrinsics"] | |
| traj = data["trajectories"] | |
| min_seq_len = ( | |
| self.num_views | |
| if not self.allow_repeat | |
| else max(self.num_views // 3, 3) | |
| ) | |
| if len(imgs) < min_seq_len: | |
| print(f"Skipping {scene}") | |
| continue | |
| collections = {} | |
| assert "image_collection" in data, "Image collection not found" | |
| collections["image"] = data["image_collection"] | |
| num_imgs = imgs.shape[0] | |
| img_groups = [] | |
| min_group_len = ( | |
| self.num_views | |
| if not self.allow_repeat | |
| else max(self.num_views // 3, 3) | |
| ) | |
| for ref_id, group in collections["image"].item().items(): | |
| if len(group) + 1 < min_group_len: | |
| continue | |
| # groups are (idx, score)s | |
| group.insert(0, (ref_id, 1.0)) | |
| group = [int(x[0] + offset) for x in group] | |
| img_groups.append(sorted(group)) | |
| if len(img_groups) == 0: | |
| print(f"Skipping {scene}") | |
| continue | |
| scenes.append(scene) | |
| sceneids.extend([j] * num_imgs) | |
| id_ranges.extend([(offset, offset + num_imgs) for _ in range(num_imgs)]) | |
| images.extend(imgs) | |
| K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0) | |
| K[:, 0, 0] = [fx for _, _, fx, _, _, _ in intrins] | |
| K[:, 1, 1] = [fy for _, _, _, fy, _, _ in intrins] | |
| K[:, 0, 2] = [cx for _, _, _, _, cx, _ in intrins] | |
| K[:, 1, 2] = [cy for _, _, _, _, _, cy in intrins] | |
| intrinsics.extend(list(K)) | |
| trajectories.extend(list(traj)) | |
| # offset groups | |
| groups.extend(img_groups) | |
| counts.append(offset) | |
| offset += num_imgs | |
| j += 1 | |
| self.scenes = scenes | |
| self.sceneids = sceneids | |
| self.id_ranges = id_ranges | |
| self.images = images | |
| self.intrinsics = intrinsics | |
| self.trajectories = trajectories | |
| self.groups = groups | |
| def __len__(self): | |
| return len(self.groups) | |
| def get_image_num(self): | |
| return len(self.images) | |
| def _get_views(self, idx, resolution, rng, num_views): | |
| if rng.choice([True, False]): | |
| image_idxs = np.arange(self.id_ranges[idx][0], self.id_ranges[idx][1]) | |
| cut_off = num_views if not self.allow_repeat else max(num_views // 3, 3) | |
| start_image_idxs = image_idxs[: len(image_idxs) - cut_off + 1] | |
| start_id = rng.choice(start_image_idxs) | |
| pos, ordered_video = self.get_seq_from_start_id( | |
| num_views, | |
| start_id, | |
| image_idxs.tolist(), | |
| rng, | |
| max_interval=self.max_interval, | |
| video_prob=0.8, | |
| fix_interval_prob=0.5, | |
| block_shuffle=16, | |
| ) | |
| image_idxs = np.array(image_idxs)[pos] | |
| else: | |
| ordered_video = False | |
| image_idxs = self.groups[idx] | |
| image_idxs = rng.permutation(image_idxs) | |
| if len(image_idxs) > num_views: | |
| image_idxs = image_idxs[:num_views] | |
| else: | |
| if rng.random() < 0.8: | |
| image_idxs = rng.choice(image_idxs, size=num_views, replace=True) | |
| else: | |
| repeat_num = num_views // len(image_idxs) + 1 | |
| image_idxs = np.tile(image_idxs, repeat_num)[:num_views] | |
| views = [] | |
| for v, view_idx in enumerate(image_idxs): | |
| scene_id = self.sceneids[view_idx] | |
| scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id]) | |
| intrinsics = self.intrinsics[view_idx] | |
| camera_pose = self.trajectories[view_idx] | |
| basename = self.images[view_idx] | |
| assert ( | |
| basename[:8] == self.scenes[scene_id] | |
| ), f"{basename}, {self.scenes[scene_id]}" | |
| # print(scene_dir, basename) | |
| # Load RGB image | |
| rgb_image = imread_cv2( | |
| osp.join(scene_dir, "vga_wide", basename.replace(".png", ".jpg")) | |
| ) | |
| # Load depthmap | |
| depthmap = imread_cv2( | |
| osp.join(scene_dir, "lowres_depth", basename), cv2.IMREAD_UNCHANGED | |
| ) | |
| depthmap = depthmap.astype(np.float32) / 1000.0 | |
| depthmap[~np.isfinite(depthmap)] = 0 # invalid | |
| rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
| rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx | |
| ) | |
| # generate img mask and raymap mask | |
| img_mask, ray_mask = self.get_img_and_ray_masks( | |
| self.is_metric, v, rng, p=[0.75, 0.2, 0.05] | |
| ) | |
| views.append( | |
| dict( | |
| img=rgb_image, | |
| depthmap=depthmap.astype(np.float32), | |
| camera_pose=camera_pose.astype(np.float32), | |
| camera_intrinsics=intrinsics.astype(np.float32), | |
| dataset="arkitscenes", | |
| label=self.scenes[scene_id] + "_" + basename, | |
| instance=f"{str(idx)}_{str(view_idx)}", | |
| is_metric=self.is_metric, | |
| is_video=ordered_video, | |
| quantile=np.array(0.98, dtype=np.float32), | |
| img_mask=img_mask, | |
| ray_mask=ray_mask, | |
| camera_only=False, | |
| depth_only=False, | |
| single_view=False, | |
| reset=False, | |
| ) | |
| ) | |
| assert len(views) == num_views | |
| return views | |