Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Utility functions for the trainer and evaluator runner.""" | |
| from typing import Any | |
| from typing import Mapping | |
| from typing import Union | |
| import tensorflow as tf | |
| from deeplab2 import config_pb2 | |
| from deeplab2.data import data_utils | |
| from deeplab2.data import dataset | |
| from deeplab2.data import sample_generator | |
| from deeplab2.data.dataloader import input_reader | |
| from deeplab2.model.encoder import axial_resnet | |
| from deeplab2.model.layers import axial_block_groups | |
| def _load_tf_model_garden_vision_checkpoint(initial_checkpoint): | |
| # Determine whether the initial_checkpoint is trained by TensorFlow Model | |
| # Garden Vision trainer. This trainer applies a hardcoded prefix "backbone" to | |
| # DeepLab model variables that start with "_encoder". | |
| checkpoint_reader = tf.train.load_checkpoint(initial_checkpoint) | |
| variable_to_shape_map = checkpoint_reader.get_variable_to_shape_map() | |
| for variable in variable_to_shape_map: | |
| if variable.startswith('backbone/_encoder/'): | |
| return True | |
| return False | |
| def maybe_load_checkpoint(initial_checkpoint: Union[str, None], | |
| load_dict: Mapping[Any, Any]) -> None: | |
| """Maybe load a checkpoint. | |
| Args: | |
| initial_checkpoint: A string or None, specifying a path to a checkpoint. | |
| load_dict: A dictionary that defines what to load from the checkpoint. | |
| Raises: | |
| ValueError: If load_dict does not contain the 'encoder'. | |
| """ | |
| if not initial_checkpoint: | |
| return | |
| if 'encoder' not in load_dict: | |
| raise ValueError('Load_dict should contain the encoder, but it is missing.') | |
| if tf.io.gfile.isdir(initial_checkpoint): | |
| initial_checkpoint = tf.train.latest_checkpoint(initial_checkpoint) | |
| if _load_tf_model_garden_vision_checkpoint(initial_checkpoint): | |
| checkpoint = tf.train.Checkpoint( | |
| backbone=tf.train.Checkpoint( | |
| _encoder=load_dict['encoder'])) | |
| else: | |
| checkpoint = tf.train.Checkpoint(**load_dict) | |
| status = checkpoint.read(initial_checkpoint) | |
| # Motion-DeepLab models require nontrivial_match, as the input channels for | |
| # the first convolution change. | |
| status.expect_partial().assert_nontrivial_match() | |
| def create_dataset(dataset_config: config_pb2.DatasetOptions, | |
| is_training: bool, | |
| only_semantic_annotations: bool = False): | |
| """Creates a tf.data.Dataset from the configuration. | |
| Args: | |
| dataset_config: A dataset_pb2.DatasetOptions configuration. | |
| is_training: A flag specifying if the dataset is used for training. | |
| only_semantic_annotations: A flag specifying if only semantic segmentation | |
| ground-truth should be generated. | |
| Returns: | |
| A tf.data.Dataset. | |
| """ | |
| dataset_info = dataset.MAP_NAME_TO_DATASET_INFO[dataset_config.dataset] | |
| decoder = data_utils.SegmentationDecoder( | |
| is_panoptic_dataset=True, | |
| is_video_dataset=dataset_info.is_video_dataset, | |
| use_two_frames=dataset_config.use_two_frames, | |
| use_next_frame=dataset_config.use_next_frame, | |
| decode_groundtruth_label=dataset_config.decode_groundtruth_label) | |
| focus_small_instances = None | |
| if dataset_config.increase_small_instance_weights: | |
| focus_small_instances = { | |
| 'threshold': dataset_config.small_instance_threshold, | |
| 'weight': dataset_config.small_instance_weight, | |
| } | |
| augmentation_options = dataset_config.augmentations | |
| generator = sample_generator.PanopticSampleGenerator( | |
| dataset_info=dataset_info._asdict(), | |
| is_training=is_training, | |
| crop_size=dataset_config.crop_size, | |
| min_resize_value=dataset_config.min_resize_value, | |
| max_resize_value=dataset_config.max_resize_value, | |
| resize_factor=dataset_config.resize_factor, | |
| min_scale_factor=augmentation_options.min_scale_factor, | |
| max_scale_factor=augmentation_options.max_scale_factor, | |
| scale_factor_step_size=augmentation_options.scale_factor_step_size, | |
| autoaugment_policy_name=augmentation_options.autoaugment_policy_name, | |
| only_semantic_annotations=only_semantic_annotations, | |
| thing_id_mask_annotations=dataset_config.thing_id_mask_annotations, | |
| max_thing_id=dataset_config.max_thing_id, | |
| sigma=dataset_config.sigma, | |
| focus_small_instances=focus_small_instances) | |
| reader = input_reader.InputReader( | |
| file_pattern=dataset_config.file_pattern, | |
| decoder_fn=decoder, | |
| generator_fn=generator, | |
| is_training=is_training) | |
| return reader(dataset_config.batch_size) | |
| def create_loss_metric_dict(loss_names, prefix='train_'): | |
| """Creates a loss metric dict. | |
| This function creates a metric for each loss name. | |
| Args: | |
| loss_names: A string list of N loss names. | |
| prefix: A string prefix, e.g., 'train_' or 'eval_'. | |
| Returns: | |
| loss_metric_dict: A dictionary of N tf.keras.metrics.Mean. | |
| """ | |
| loss_metric_dict = {} | |
| for loss_name in loss_names: | |
| loss_metric = tf.keras.metrics.Mean( | |
| prefix + loss_name, dtype=tf.float32) | |
| loss_metric_dict[loss_name] = loss_metric | |
| return loss_metric_dict | |
| def check_if_variable_in_backbone( | |
| variable, encoder_name, encoder_variable_names): | |
| """Determines whether a variable belongs to the pretrained backbone. | |
| The use case of this function could be to find all variables in the backbone, | |
| and then, we can use a smaller learning rate for them during training. For | |
| example, in MaX-DeepLab, we use 0.1x learning rate for the backbone. This is | |
| implemented by building a backbone optimizer (besides the base optimizer) for | |
| all variables that have been pretrained on a classification task. For other | |
| DeepLab variants, a smaller backbone learning rate is supported although it is | |
| not used by default. | |
| Args: | |
| variable: A tf.Variable, the variable to check. | |
| encoder_name: A string, the name of the DeepLab encoder. | |
| encoder_variable_names: A list of strings, all variable names of the DeepLab | |
| encoder. | |
| Returns: | |
| variable_in_backbone: A bool, whether the variable belongs to the backbone. | |
| """ | |
| # Return false if the variable is not part of the encoder. | |
| if variable.name not in encoder_variable_names: | |
| return False | |
| # The variable is part of the encoder. | |
| # Return true if the encoder is not max_deeplab_s or max_deeplab_l. | |
| if encoder_name not in ('max_deeplab_s', 'max_deeplab_l'): | |
| return True | |
| # The variable is part of a max_deeplab encoder. | |
| # Return false for excluded keywords. | |
| if any([axial_block_groups.TRANSFORMER in variable.name, | |
| axial_resnet.EXTRA in variable.name, | |
| axial_resnet.MEMORY_FEATURE in variable.name]): | |
| return False | |
| return True | |