Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """AutoAugment utility file. | |
| Please cite or refer to the following papers: | |
| - Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. | |
| "Autoaugment: Learning augmentation policies from data." In CVPR, 2019. | |
| - Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. | |
| "Randaugment: Practical automated data augmentation with a reduced search | |
| space." In CVPR, 2020. | |
| """ | |
| import inspect | |
| import tensorflow as tf | |
| from deeplab2.data.preprocessing import autoaugment_policy | |
| # This signifies the max integer that the controller RNN could predict for the | |
| # augmentation scheme. | |
| _MAX_LEVEL = 10. | |
| def blend(image1, image2, factor): | |
| """Blends image1 and image2 using 'factor'. | |
| Factor can be above 0.0. A value of 0.0 means only image1 is used. | |
| A value of 1.0 means only image2 is used. A value between 0.0 and | |
| 1.0 means we linearly interpolate the pixel values between the two | |
| images. A value greater than 1.0 "extrapolates" the difference | |
| between the two pixel values, and we clip the results to values | |
| between 0 and 255. | |
| Args: | |
| image1: An image Tensor of type uint8. | |
| image2: An image Tensor of type uint8. | |
| factor: A floating point value above 0.0. | |
| Returns: | |
| A blended image Tensor of type uint8. | |
| """ | |
| if factor == 0.0: | |
| return tf.convert_to_tensor(image1) | |
| if factor == 1.0: | |
| return tf.convert_to_tensor(image2) | |
| image1 = tf.cast(image1, tf.float32) | |
| image2 = tf.cast(image2, tf.float32) | |
| difference = image2 - image1 | |
| scaled = factor * difference | |
| # Do addition in float. | |
| temp = tf.cast(image1, tf.float32) + scaled | |
| # Interpolate | |
| if factor > 0.0 and factor < 1.0: | |
| # Interpolation means we always stay within 0 and 255. | |
| return tf.cast(temp, tf.uint8) | |
| # Extrapolate: | |
| # | |
| # We need to clip and then cast. | |
| return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8) | |
| def solarize(image, threshold=128): | |
| # For each pixel in the image, select the pixel | |
| # if the value is less than the threshold. | |
| # Otherwise, subtract 255 from the pixel. | |
| return tf.where(image < threshold, image, 255 - image) | |
| def invert(image): | |
| """Inverts the image pixels.""" | |
| image = tf.convert_to_tensor(image) | |
| return 255 - image | |
| def color(image, factor): | |
| """Equivalent of PIL Color.""" | |
| degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) | |
| return blend(degenerate, image, factor) | |
| def contrast(image, factor): | |
| """Equivalent of PIL Contrast.""" | |
| degenerate = tf.image.rgb_to_grayscale(image) | |
| # Cast before calling tf.histogram. | |
| degenerate = tf.cast(degenerate, tf.int32) | |
| # Compute the grayscale histogram, then compute the mean pixel value, | |
| # and create a constant image size of that value. Use that as the | |
| # blending degenerate target of the original image. | |
| hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256) | |
| mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0 | |
| degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean | |
| degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) | |
| degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8)) | |
| return blend(degenerate, image, factor) | |
| def brightness(image, factor): | |
| """Equivalent of PIL Brightness.""" | |
| degenerate = tf.zeros_like(image) | |
| return blend(degenerate, image, factor) | |
| def posterize(image, bits): | |
| """Equivalent of PIL Posterize.""" | |
| shift = 8 - bits | |
| return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift) | |
| def autocontrast(image): | |
| """Implements Autocontrast function from PIL using TF ops. | |
| Args: | |
| image: A 3D uint8 tensor. | |
| Returns: | |
| The image after it has had autocontrast applied to it and will be of type | |
| uint8. | |
| """ | |
| def scale_channel(image): | |
| """Scale the 2D image using the autocontrast rule.""" | |
| # A possibly cheaper version can be done using cumsum/unique_with_counts | |
| # over the histogram values, rather than iterating over the entire image. | |
| # to compute mins and maxes. | |
| lo = tf.cast(tf.reduce_min(image), tf.float32) | |
| hi = tf.cast(tf.reduce_max(image), tf.float32) | |
| # Scale the image, making the lowest value 0 and the highest value 255. | |
| def scale_values(im): | |
| scale = 255.0 / (hi - lo) | |
| offset = -lo * scale | |
| im = tf.cast(im, tf.float32) * scale + offset | |
| im = tf.clip_by_value(im, 0.0, 255.0) | |
| return tf.cast(im, tf.uint8) | |
| result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image) | |
| return result | |
| # Assumes RGB for now. Scales each channel independently | |
| # and then stacks the result. | |
| s1 = scale_channel(image[:, :, 0]) | |
| s2 = scale_channel(image[:, :, 1]) | |
| s3 = scale_channel(image[:, :, 2]) | |
| image = tf.stack([s1, s2, s3], 2) | |
| return image | |
| def sharpness(image, factor): | |
| """Implements Sharpness function from PIL using TF ops.""" | |
| orig_image = image | |
| image = tf.cast(image, tf.float32) | |
| # Make image 4D for conv operation. | |
| image = tf.expand_dims(image, 0) | |
| # SMOOTH PIL Kernel. | |
| kernel = tf.constant( | |
| [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32, | |
| shape=[3, 3, 1, 1]) / 13. | |
| # Tile across channel dimension. | |
| kernel = tf.tile(kernel, [1, 1, 3, 1]) | |
| strides = [1, 1, 1, 1] | |
| degenerate = tf.nn.depthwise_conv2d( | |
| image, kernel, strides, padding='VALID', dilations=[1, 1]) | |
| degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) | |
| degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0]) | |
| # For the borders of the resulting image, fill in the values of the | |
| # original image. | |
| mask = tf.ones_like(degenerate) | |
| padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]]) | |
| padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]]) | |
| result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image) | |
| # Blend the final result. | |
| return blend(result, orig_image, factor) | |
| def equalize(image): | |
| """Implements Equalize function from PIL using TF ops.""" | |
| def scale_channel(im, c): | |
| """Scale the data in the channel to implement equalize.""" | |
| im = tf.cast(im[:, :, c], tf.int32) | |
| # Compute the histogram of the image channel. | |
| histo = tf.histogram_fixed_width(im, [0, 255], nbins=256) | |
| # For the purposes of computing the step, filter out the nonzeros. | |
| nonzero = tf.where(tf.not_equal(histo, 0)) | |
| nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1]) | |
| step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255 | |
| def build_lut(histo, step): | |
| # Compute the cumulative sum, shifting by step // 2 | |
| # and then normalization by step. | |
| lut = (tf.cumsum(histo) + (step // 2)) // step | |
| # Shift lut, prepending with 0. | |
| lut = tf.concat([[0], lut[:-1]], 0) | |
| # Clip the counts to be in range. This is done | |
| # in the C code for image.point. | |
| return tf.clip_by_value(lut, 0, 255) | |
| # If step is zero, return the original image. Otherwise, build | |
| # lut from the full histogram and step and then index from it. | |
| result = tf.cond(tf.equal(step, 0), | |
| lambda: im, | |
| lambda: tf.gather(build_lut(histo, step), im)) | |
| return tf.cast(result, tf.uint8) | |
| # Assumes RGB for now. Scales each channel independently | |
| # and then stacks the result. | |
| s1 = scale_channel(image, 0) | |
| s2 = scale_channel(image, 1) | |
| s3 = scale_channel(image, 2) | |
| image = tf.stack([s1, s2, s3], 2) | |
| return image | |
| NAME_TO_FUNC = { | |
| 'AutoContrast': autocontrast, | |
| 'Equalize': equalize, | |
| 'Invert': invert, | |
| 'Posterize': posterize, | |
| 'Solarize': solarize, | |
| 'Color': color, | |
| 'Contrast': contrast, | |
| 'Brightness': brightness, | |
| 'Sharpness': sharpness, | |
| } | |
| def _enhance_level_to_arg(level): | |
| return ((level/_MAX_LEVEL) * 1.8 + 0.1,) | |
| def level_to_arg(): | |
| return { | |
| 'AutoContrast': | |
| lambda level: (), | |
| 'Equalize': | |
| lambda level: (), | |
| 'Invert': | |
| lambda level: (), | |
| 'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),), | |
| 'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),), | |
| 'Color': | |
| _enhance_level_to_arg, | |
| 'Contrast': | |
| _enhance_level_to_arg, | |
| 'Brightness': | |
| _enhance_level_to_arg, | |
| 'Sharpness': | |
| _enhance_level_to_arg, | |
| } | |
| def label_wrapper(func): | |
| """Adds a label function argument to func and returns unchanged label.""" | |
| def wrapper(images, label, *args, **kwargs): | |
| return func(images, *args, **kwargs), label | |
| return wrapper | |
| def _parse_policy_info(name, prob, level, replace_value, ignore_label): | |
| """Returns the function corresponding to `name` and update `level` param.""" | |
| func = NAME_TO_FUNC[name] | |
| args = level_to_arg()[name](level) | |
| if 'prob' in inspect.getfullargspec(func)[0]: | |
| args = tuple([prob] + list(args)) | |
| # Add in replace arg if it is required for the function that is being called. | |
| if 'replace' in inspect.getfullargspec(func)[0]: | |
| # Make sure ignore_label is also in the argument. | |
| assert 'ignore_label' in inspect.getfullargspec(func)[0] | |
| # Make sure replace is the second from last argument | |
| assert 'replace' == inspect.getfullargspec(func)[0][-2] | |
| # Make sure ignore_label is the final argument | |
| assert 'ignore_label' == inspect.getfullargspec(func)[0][-1] | |
| args = tuple(list(args) + [replace_value, ignore_label]) | |
| # Add label as the second positional argument for the function if it does | |
| # not already exist. | |
| if 'label' not in inspect.getfullargspec(func)[0]: | |
| func = label_wrapper(func) | |
| return (func, prob, args) | |
| def _apply_func_with_prob(func, image, args, prob, label): | |
| """Apply `func` to image w/ `args` as input with probability `prob`.""" | |
| assert isinstance(args, tuple) | |
| assert 'label' == inspect.getfullargspec(func)[0][1] | |
| # If prob is a function argument, then this randomness is being handled | |
| # inside the function, so make sure it is always called. | |
| if 'prob' in inspect.getfullargspec(func)[0]: | |
| prob = 1.0 | |
| # Apply the function with probability `prob`. | |
| should_apply_op = tf.cast( | |
| tf.floor(tf.random.uniform([], dtype=tf.float32) + prob), tf.bool) | |
| augmented_image, augmented_label = tf.cond( | |
| should_apply_op, | |
| lambda: func(image, label, *args), | |
| lambda: (image, label)) | |
| return augmented_image, augmented_label | |
| def select_and_apply_random_policy(policies, image, label): | |
| """Select a random policy from `policies` and apply it to `image`.""" | |
| policy_to_select = tf.random.uniform([], maxval=len(policies), dtype=tf.int32) | |
| # Note that using tf.case instead of tf.conds would result in significantly | |
| # larger graphs and would even break export for some larger policies. | |
| for (i, policy) in enumerate(policies): | |
| image, label = tf.cond( | |
| tf.equal(i, policy_to_select), | |
| lambda selected_policy=policy: selected_policy(image, label), | |
| lambda: (image, label)) | |
| return (image, label) | |
| def build_and_apply_autoaugment_policy(policies, image, label, ignore_label): | |
| """Builds a policy from the given policies passed in and applies to image. | |
| Args: | |
| policies: list of lists of tuples in the form `(func, prob, level)`, `func` | |
| is a string name of the augmentation function, `prob` is the probability | |
| of applying the `func` operation, `level` is the input argument for | |
| `func`. | |
| image: tf.Tensor that the resulting policy will be applied to. | |
| label: tf.Tensor that the resulting policy will be applied to. | |
| ignore_label: The label value which will be ignored for training and | |
| evaluation. | |
| Returns: | |
| A version of image that now has data augmentation applied to it based on | |
| the `policies` pass into the function. Additionally, returns bboxes if | |
| a value for them is passed in that is not None | |
| """ | |
| replace_value = [128, 128, 128] | |
| # func is the string name of the augmentation function, prob is the | |
| # probability of applying the operation and level is the parameter associated | |
| # with the tf op. | |
| # tf_policies are functions that take in an image and return an augmented | |
| # image. | |
| tf_policies = [] | |
| for policy in policies: | |
| tf_policy = [] | |
| # Link string name to the correct python function and make sure the correct | |
| # argument is passed into that function. | |
| for policy_info in policy: | |
| policy_info = ( | |
| list(policy_info) + [replace_value, ignore_label]) | |
| tf_policy.append(_parse_policy_info(*policy_info)) | |
| # Now build the tf policy that will apply the augmentation procedue | |
| # on image. | |
| def make_final_policy(tf_policy_): | |
| def final_policy(image_, label_): | |
| for func, prob, args in tf_policy_: | |
| image_, label_ = _apply_func_with_prob( | |
| func, image_, args, prob, label_) | |
| return image_, label_ | |
| return final_policy | |
| tf_policies.append(make_final_policy(tf_policy)) | |
| augmented_images, augmented_label = select_and_apply_random_policy( | |
| tf_policies, image, label) | |
| # If no bounding boxes were specified, then just return the images. | |
| return (augmented_images, augmented_label) | |
| def distort_image_with_autoaugment(image, | |
| label, | |
| ignore_label, | |
| augmentation_name=None): | |
| """Applies the AutoAugment policy to `image` and `label`. | |
| Args: | |
| image: `Tensor` of shape [height, width, 3] representing an image. | |
| label: `Tensor` of shape [height, width, 1] representing a label. | |
| ignore_label: The label value which will be ignored for training and | |
| evaluation. | |
| augmentation_name: The name of the AutoAugment policy to use. See | |
| autoaugment_policy.py for available_policies. | |
| Returns: | |
| A tuple containing the augmented versions of `image` and `label`. | |
| Raises: | |
| ValueError: If the augmentation_name is not in available_policies. | |
| """ | |
| if augmentation_name: | |
| available_policies = autoaugment_policy.available_policies | |
| if augmentation_name not in available_policies: | |
| raise ValueError( | |
| 'Invalid augmentation_name: {}'.format(augmentation_name)) | |
| policy = available_policies[augmentation_name] | |
| return build_and_apply_autoaugment_policy( | |
| policy, image, label, ignore_label) | |
| return image, label | |