Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for build_coco_data.""" | |
| import json | |
| import os | |
| from absl import flags | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow as tf | |
| from deeplab2.data import build_coco_data | |
| from deeplab2.data import coco_constants | |
| FLAGS = flags.FLAGS | |
| _TEST_FILE_NAME = '000000123456.png' | |
| class BuildCOCODataTest(tf.test.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| self.data_dir = FLAGS.test_tmpdir | |
| self.height = 100 | |
| self.width = 100 | |
| self.split = 'train' | |
| image_path = os.path.join(self.data_dir, | |
| build_coco_data._FOLDERS_MAP[self.split]['image']) | |
| panoptic_map_path = os.path.join(self.data_dir, | |
| build_coco_data._FOLDERS_MAP | |
| [self.split]['label']) | |
| tf.io.gfile.makedirs(panoptic_map_path) | |
| panoptic_map_path = os.path.join(panoptic_map_path, | |
| 'panoptic_%s2017' % self.split) | |
| tf.io.gfile.makedirs(image_path) | |
| tf.io.gfile.makedirs(panoptic_map_path) | |
| self.panoptic_maps = {} | |
| image_id = int(_TEST_FILE_NAME[:-4]) | |
| self.panoptic_maps[image_id] = self._create_image_and_panoptic_map( | |
| image_path, panoptic_map_path, image_id) | |
| def _create_image_and_panoptic_map(self, image_path, panoptic_path, image_id): | |
| def id2rgb(id_map): | |
| id_map_copy = id_map.copy() | |
| rgb_shape = tuple(list(id_map.shape) + [3]) | |
| rgb_map = np.zeros(rgb_shape, dtype=np.uint8) | |
| for i in range(3): | |
| rgb_map[..., i] = id_map_copy % 256 | |
| id_map_copy //= 256 | |
| return rgb_map | |
| # Creates dummy images and panoptic maps. | |
| # Dummy image. | |
| image = np.random.randint( | |
| 0, 255, (self.height, self.width, 3), dtype=np.uint8) | |
| with tf.io.gfile.GFile( | |
| os.path.join(image_path, '%012d.jpg' % image_id), 'wb') as f: | |
| Image.fromarray(image).save(f, format='JPEG') | |
| # Dummy panoptic map. | |
| semantic = np.random.randint( | |
| 0, 201, (self.height, self.width), dtype=np.int32) | |
| instance_ = np.random.randint( | |
| 0, 100, (self.height, self.width), dtype=np.int32) | |
| id_mapping = coco_constants.get_id_mapping() | |
| valid_semantic = id_mapping.keys() | |
| for i in range(201): | |
| if i not in valid_semantic: | |
| mask = (semantic == i) | |
| semantic[mask] = 0 | |
| instance_[mask] = 0 | |
| instance = instance_.copy() | |
| segments_info = [] | |
| for sem in np.unique(semantic): | |
| ins_id = 1 | |
| if sem == 0: | |
| continue | |
| if id_mapping[sem] in build_coco_data._CLASS_HAS_INSTANCE_LIST: | |
| for ins in np.unique(instance_[semantic == sem]): | |
| instance[np.logical_and(semantic == sem, instance_ == ins)] = ins_id | |
| area = np.logical_and(semantic == sem, instance_ == ins).sum() | |
| idx = sem * 256 + ins_id | |
| iscrowd = 0 | |
| segments_info.append({ | |
| 'id': idx.tolist(), | |
| 'category_id': sem.tolist(), | |
| 'area': area.tolist(), | |
| 'iscrowd': iscrowd, | |
| }) | |
| ins_id += 1 | |
| else: | |
| instance[semantic == sem] = 0 | |
| area = (semantic == sem).sum() | |
| idx = sem * 256 | |
| iscrowd = 0 | |
| segments_info.append({ | |
| 'id': idx.tolist(), | |
| 'category_id': sem.tolist(), | |
| 'area': area.tolist(), | |
| 'iscrowd': iscrowd, | |
| }) | |
| encoded_panoptic_map = semantic * 256 + instance | |
| encoded_panoptic_map = id2rgb(encoded_panoptic_map) | |
| with tf.io.gfile.GFile( | |
| os.path.join(panoptic_path, '%012d.png' % image_id), 'wb') as f: | |
| Image.fromarray(encoded_panoptic_map).save(f, format='PNG') | |
| for i in range(201): | |
| if i in valid_semantic: | |
| mask = (semantic == i) | |
| semantic[mask] = id_mapping[i] | |
| decoded_panoptic_map = semantic * 256 + instance | |
| # Write json file | |
| json_annotation = { | |
| 'annotations': [ | |
| { | |
| 'file_name': _TEST_FILE_NAME, | |
| 'image_id': int(_TEST_FILE_NAME[:-4]), | |
| 'segments_info': segments_info | |
| } | |
| ] | |
| } | |
| json_annotation_path = os.path.join(self.data_dir, | |
| build_coco_data._FOLDERS_MAP | |
| [self.split]['label'], | |
| 'panoptic_%s2017.json' % self.split) | |
| with tf.io.gfile.GFile(json_annotation_path, 'w') as f: | |
| json.dump(json_annotation, f, indent=2) | |
| return decoded_panoptic_map | |
| def test_build_coco_dataset_correct(self): | |
| build_coco_data._convert_dataset( | |
| coco_root=self.data_dir, | |
| dataset_split=self.split, | |
| output_dir=FLAGS.test_tmpdir) | |
| output_record = os.path.join( | |
| FLAGS.test_tmpdir, '%s-%05d-of-%05d.tfrecord' % | |
| (self.split, 0, build_coco_data._NUM_SHARDS)) | |
| self.assertTrue(tf.io.gfile.exists(output_record)) | |
| # Parses tf record. | |
| image_ids = sorted(self.panoptic_maps) | |
| for i, raw_record in enumerate( | |
| tf.data.TFRecordDataset([output_record]).take(5)): | |
| image_id = image_ids[i] | |
| example = tf.train.Example.FromString(raw_record.numpy()) | |
| panoptic_map = np.fromstring( | |
| example.features.feature['image/segmentation/class/encoded'] | |
| .bytes_list.value[0], | |
| dtype=np.int32).reshape((self.height, self.width)) | |
| np.testing.assert_array_equal(panoptic_map, self.panoptic_maps[image_id]) | |
| if __name__ == '__main__': | |
| tf.test.main() | |