Spaces:
Runtime error
Runtime error
Joshua Sundance Bailey
commited on
Commit
Β·
9946cb7
1
Parent(s):
b4d0284
small changes
Browse files- .env-example +5 -13
- .github/pull_request_template.md +1 -1
- .idea/.name +1 -0
- .idea/{AI_chatbot.iml β langchain-streamlit-demo.iml} +1 -1
- .idea/misc.xml +1 -1
- docker-compose.yml +8 -2
- {AI_chatbot β langchain-streamlit-demo}/app.py +29 -110
- langchain-streamlit-demo/llm_stuff.py +71 -0
.env-example
CHANGED
|
@@ -1,18 +1,10 @@
|
|
| 1 |
-
|
| 2 |
|
| 3 |
LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
|
| 4 |
-
LANGCHAIN_API_KEY
|
| 5 |
LANGCHAIN_TRACING_V2="true"
|
| 6 |
-
LANGCHAIN_PROJECT="
|
| 7 |
|
| 8 |
-
ANYSCALE_API_KEY
|
| 9 |
OPENAI_API_KEY=sk-...
|
| 10 |
-
ANTHROPIC_API_KEY
|
| 11 |
-
|
| 12 |
-
#https://github.com/streamlit/app-starter-kit
|
| 13 |
-
#https://github.com/langchain-ai/streamlit-agent
|
| 14 |
-
#https://github.com/hwchase17/langchain-streamlit-template
|
| 15 |
-
#https://github.com/dataprofessor/langchain-ask-the-doc
|
| 16 |
-
#https://github.com/dataprofessor/langchain-ask-the-data
|
| 17 |
-
#https://github.com/dataprofessor/langchain-blog-outline-generator
|
| 18 |
-
#https://github.com/dataprofessor/langchain-text-summarization
|
|
|
|
| 1 |
+
APP_PORT=8181
|
| 2 |
|
| 3 |
LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
|
| 4 |
+
LANGCHAIN_API_KEY=ls__...
|
| 5 |
LANGCHAIN_TRACING_V2="true"
|
| 6 |
+
LANGCHAIN_PROJECT="streamlit_chatbot"
|
| 7 |
|
| 8 |
+
ANYSCALE_API_KEY=secret_...
|
| 9 |
OPENAI_API_KEY=sk-...
|
| 10 |
+
ANTHROPIC_API_KEY="sk-..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/pull_request_template.md
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
Thank you for contributing
|
| 2 |
Before submitting this PR, please make sure:
|
| 3 |
|
| 4 |
- [ ] Your code builds clean without any errors or warnings
|
|
|
|
| 1 |
+
Thank you for contributing!
|
| 2 |
Before submitting this PR, please make sure:
|
| 3 |
|
| 4 |
- [ ] Your code builds clean without any errors or warnings
|
.idea/.name
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
langchain-streamlit-demo
|
.idea/{AI_chatbot.iml β langchain-streamlit-demo.iml}
RENAMED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
<module type="PYTHON_MODULE" version="4">
|
| 3 |
<component name="NewModuleRootManager">
|
| 4 |
<content url="file://$MODULE_DIR$" />
|
| 5 |
-
<orderEntry type="
|
| 6 |
<orderEntry type="sourceFolder" forTests="false" />
|
| 7 |
</component>
|
| 8 |
</module>
|
|
|
|
| 2 |
<module type="PYTHON_MODULE" version="4">
|
| 3 |
<component name="NewModuleRootManager">
|
| 4 |
<content url="file://$MODULE_DIR$" />
|
| 5 |
+
<orderEntry type="jdk" jdkName="Remote Python 3.11.4 Docker (<none>:<none>) (5)" jdkType="Python SDK" />
|
| 6 |
<orderEntry type="sourceFolder" forTests="false" />
|
| 7 |
</component>
|
| 8 |
</module>
|
.idea/misc.xml
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
<project version="4">
|
| 3 |
-
<component name="ProjectRootManager" version="2" project-jdk-name="
|
| 4 |
</project>
|
|
|
|
| 1 |
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
<project version="4">
|
| 3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.11.4 Docker (<none>:<none>) (5)" project-jdk-type="Python SDK" />
|
| 4 |
</project>
|
docker-compose.yml
CHANGED
|
@@ -9,6 +9,12 @@ services:
|
|
| 9 |
ports:
|
| 10 |
- "8000:8000"
|
| 11 |
volumes:
|
| 12 |
-
|
| 13 |
working_dir: /home/appuser/app/
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
ports:
|
| 10 |
- "8000:8000"
|
| 11 |
volumes:
|
| 12 |
+
- .:/home/appuser/app:rw
|
| 13 |
working_dir: /home/appuser/app/
|
| 14 |
+
command: [
|
| 15 |
+
"python", "-m",
|
| 16 |
+
"streamlit", "run",
|
| 17 |
+
"/home/appuser/app/langchain-streamlit-demo/app.py",
|
| 18 |
+
"--server.port", "8000",
|
| 19 |
+
"--server.address", "0.0.0.0"
|
| 20 |
+
]
|
{AI_chatbot β langchain-streamlit-demo}/app.py
RENAMED
|
@@ -1,42 +1,23 @@
|
|
| 1 |
-
from datetime import datetime
|
| 2 |
-
|
| 3 |
import streamlit as st
|
| 4 |
-
from langchain import LLMChain
|
| 5 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
| 6 |
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
|
| 7 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
| 8 |
-
from langchain.chat_models import ChatOpenAI
|
| 9 |
-
from langchain.memory import StreamlitChatMessageHistory, ConversationBufferMemory
|
| 10 |
-
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 11 |
from langchain.schema.runnable import RunnableConfig
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
st.set_page_config(
|
| 16 |
page_title="Chat LangSmith",
|
| 17 |
page_icon="π¦",
|
| 18 |
)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
def get_llm_chain(system_prompt: str, memory: ConversationBufferMemory) -> LLMChain:
|
| 22 |
-
"""Return a basic LLMChain with memory."""
|
| 23 |
-
prompt = ChatPromptTemplate.from_messages(
|
| 24 |
-
[
|
| 25 |
-
(
|
| 26 |
-
"system",
|
| 27 |
-
system_prompt + "\nIt's currently {time}.",
|
| 28 |
-
),
|
| 29 |
-
MessagesPlaceholder(variable_name="chat_history"),
|
| 30 |
-
("human", "{input}"),
|
| 31 |
-
],
|
| 32 |
-
).partial(time=lambda: str(datetime.now()))
|
| 33 |
-
llm = ChatOpenAI(temperature=0.7, streaming=True)
|
| 34 |
-
return LLMChain(prompt=prompt, llm=llm, memory=memory)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
client = Client()
|
| 38 |
-
|
| 39 |
-
|
| 40 |
# "# Chatπ¦π οΈ"
|
| 41 |
# Initialize State
|
| 42 |
if "trace_link" not in st.session_state:
|
|
@@ -49,21 +30,25 @@ st.sidebar.markdown(
|
|
| 49 |
""",
|
| 50 |
)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
chat_memory=StreamlitChatMessageHistory(key="langchain_messages"),
|
| 62 |
-
return_messages=True,
|
| 63 |
-
memory_key="chat_history",
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
if st.sidebar.button("Clear message history"):
|
| 69 |
print("Clearing message history")
|
|
@@ -96,19 +81,6 @@ if st.session_state.trace_link:
|
|
| 96 |
)
|
| 97 |
|
| 98 |
|
| 99 |
-
class StreamHandler(BaseCallbackHandler):
|
| 100 |
-
def __init__(self, container, initial_text=""):
|
| 101 |
-
self.container = container
|
| 102 |
-
self.text = initial_text
|
| 103 |
-
|
| 104 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
| 105 |
-
self.text += token
|
| 106 |
-
self.container.markdown(self.text)
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
run_collector = RunCollectorCallbackHandler()
|
| 110 |
-
|
| 111 |
-
|
| 112 |
def _reset_feedback():
|
| 113 |
st.session_state.feedback_update = None
|
| 114 |
st.session_state.feedback = None
|
|
@@ -135,59 +107,6 @@ if prompt := st.chat_input(placeholder="Ask me a question!"):
|
|
| 135 |
url = client.read_run(run.id).url
|
| 136 |
st.session_state.trace_link = url
|
| 137 |
|
| 138 |
-
|
| 139 |
-
# Optionally add a thumbs up/down button for feedback
|
| 140 |
if st.session_state.get("run_id"):
|
| 141 |
-
|
| 142 |
-
# feedback_type="thumbs",
|
| 143 |
-
# key=f"feedback_{st.session_state.run_id}",
|
| 144 |
-
# )
|
| 145 |
-
# scores = {"π": 1, "π": 0}
|
| 146 |
-
scores = {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0}
|
| 147 |
-
feedback = streamlit_feedback(
|
| 148 |
-
feedback_type="faces",
|
| 149 |
-
optional_text_label="[Optional] Please provide an explanation",
|
| 150 |
-
key=f"feedback_{st.session_state.run_id}",
|
| 151 |
-
)
|
| 152 |
-
if feedback:
|
| 153 |
-
score = scores[feedback["score"]]
|
| 154 |
-
feedback = client.create_feedback(
|
| 155 |
-
st.session_state.run_id,
|
| 156 |
-
feedback["type"],
|
| 157 |
-
score=score,
|
| 158 |
-
comment=feedback.get("text", None),
|
| 159 |
-
)
|
| 160 |
-
st.session_state.feedback = {"feedback_id": str(feedback.id), "score": score}
|
| 161 |
-
st.toast("Feedback recorded!", icon="π")
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
# # Prompt for more information, if feedback was submitted
|
| 165 |
-
# if st.session_state.get("feedback"):
|
| 166 |
-
# feedback = st.session_state.get("feedback")
|
| 167 |
-
# feedback_id = feedback["feedback_id"]
|
| 168 |
-
# score = feedback["score"]
|
| 169 |
-
# if score == 0:
|
| 170 |
-
# if correction := st.text_input(
|
| 171 |
-
# label="What would the correct or preferred response have been?",
|
| 172 |
-
# key=f"correction_{feedback_id}",
|
| 173 |
-
# ):
|
| 174 |
-
# st.session_state.feedback_update = {
|
| 175 |
-
# "correction": {"desired": correction},
|
| 176 |
-
# "feedback_id": feedback_id,
|
| 177 |
-
# }
|
| 178 |
-
# elif score == 1:
|
| 179 |
-
# if comment := st.text_input(
|
| 180 |
-
# label="Anything else you'd like to add about this response?",
|
| 181 |
-
# key=f"comment_{feedback_id}",
|
| 182 |
-
# ):
|
| 183 |
-
# st.session_state.feedback_update = {
|
| 184 |
-
# "comment": comment,
|
| 185 |
-
# "feedback_id": feedback_id,
|
| 186 |
-
# }
|
| 187 |
-
# # Update the feedback if additional information was provided
|
| 188 |
-
# if st.session_state.get("feedback_update"):
|
| 189 |
-
# feedback_update = st.session_state.get("feedback_update")
|
| 190 |
-
# feedback_id = feedback_update.pop("feedback_id")
|
| 191 |
-
# client.update_feedback(feedback_id, **feedback_update)
|
| 192 |
-
# # Clear the comment or correction box
|
| 193 |
-
# _reset_feedback()
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
|
| 3 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
|
|
|
|
|
|
|
|
|
| 4 |
from langchain.schema.runnable import RunnableConfig
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from llm_stuff import (
|
| 8 |
+
_DEFAULT_SYSTEM_PROMPT,
|
| 9 |
+
get_memory,
|
| 10 |
+
get_llm_chain,
|
| 11 |
+
StreamHandler,
|
| 12 |
+
feedback_component,
|
| 13 |
+
get_langsmith_client,
|
| 14 |
+
)
|
| 15 |
|
| 16 |
st.set_page_config(
|
| 17 |
page_title="Chat LangSmith",
|
| 18 |
page_icon="π¦",
|
| 19 |
)
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# "# Chatπ¦π οΈ"
|
| 22 |
# Initialize State
|
| 23 |
if "trace_link" not in st.session_state:
|
|
|
|
| 30 |
""",
|
| 31 |
)
|
| 32 |
|
| 33 |
+
system_prompt = (
|
| 34 |
+
st.sidebar.text_area(
|
| 35 |
+
"Custom Instructions",
|
| 36 |
+
_DEFAULT_SYSTEM_PROMPT,
|
| 37 |
+
help="Custom instructions to provide the language model to determine style, personality, etc.",
|
| 38 |
+
)
|
| 39 |
+
.strip()
|
| 40 |
+
.replace("{", "{{")
|
| 41 |
+
.replace("}", "}}")
|
|
|
|
|
|
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
+
memory = get_memory()
|
| 45 |
+
|
| 46 |
+
chain = get_llm_chain(memory, system_prompt)
|
| 47 |
+
|
| 48 |
+
client = get_langsmith_client()
|
| 49 |
+
|
| 50 |
+
run_collector = RunCollectorCallbackHandler()
|
| 51 |
+
|
| 52 |
|
| 53 |
if st.sidebar.button("Clear message history"):
|
| 54 |
print("Clearing message history")
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def _reset_feedback():
|
| 85 |
st.session_state.feedback_update = None
|
| 86 |
st.session_state.feedback = None
|
|
|
|
| 107 |
url = client.read_run(run.id).url
|
| 108 |
st.session_state.trace_link = url
|
| 109 |
|
| 110 |
+
|
|
|
|
| 111 |
if st.session_state.get("run_id"):
|
| 112 |
+
feedback_component(client)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
langchain-streamlit-demo/llm_stuff.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datetime import datetime
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from langchain import LLMChain
|
| 5 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
| 6 |
+
from langchain.chat_models import ChatOpenAI
|
| 7 |
+
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
| 8 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 9 |
+
from streamlit_feedback import streamlit_feedback
|
| 10 |
+
from langsmith.client import Client
|
| 11 |
+
|
| 12 |
+
_DEFAULT_SYSTEM_PROMPT = "You are a helpful chatbot."
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_langsmith_client():
|
| 16 |
+
return Client()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_memory() -> ConversationBufferMemory:
|
| 20 |
+
return ConversationBufferMemory(
|
| 21 |
+
chat_memory=StreamlitChatMessageHistory(key="langchain_messages"),
|
| 22 |
+
return_messages=True,
|
| 23 |
+
memory_key="chat_history",
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_llm_chain(
|
| 28 |
+
memory: ConversationBufferMemory,
|
| 29 |
+
system_prompt: str = _DEFAULT_SYSTEM_PROMPT,
|
| 30 |
+
) -> LLMChain:
|
| 31 |
+
"""Return a basic LLMChain with memory."""
|
| 32 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 33 |
+
[
|
| 34 |
+
(
|
| 35 |
+
"system",
|
| 36 |
+
system_prompt + "\nIt's currently {time}.",
|
| 37 |
+
),
|
| 38 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
| 39 |
+
("human", "{input}"),
|
| 40 |
+
],
|
| 41 |
+
).partial(time=lambda: str(datetime.now()))
|
| 42 |
+
llm = ChatOpenAI(temperature=0.7, streaming=True)
|
| 43 |
+
return LLMChain(prompt=prompt, llm=llm, memory=memory or get_memory())
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class StreamHandler(BaseCallbackHandler):
|
| 47 |
+
def __init__(self, container, initial_text=""):
|
| 48 |
+
self.container = container
|
| 49 |
+
self.text = initial_text
|
| 50 |
+
|
| 51 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
| 52 |
+
self.text += token
|
| 53 |
+
self.container.markdown(self.text)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def feedback_component(client):
|
| 57 |
+
scores = {"π": 1, "π": 0.75, "π": 0.5, "π": 0.25, "π": 0}
|
| 58 |
+
if feedback := streamlit_feedback(
|
| 59 |
+
feedback_type="faces",
|
| 60 |
+
optional_text_label="[Optional] Please provide an explanation",
|
| 61 |
+
key=f"feedback_{st.session_state.run_id}",
|
| 62 |
+
):
|
| 63 |
+
score = scores[feedback["score"]]
|
| 64 |
+
feedback = client.create_feedback(
|
| 65 |
+
st.session_state.run_id,
|
| 66 |
+
feedback["type"],
|
| 67 |
+
score=score,
|
| 68 |
+
comment=feedback.get("text", None),
|
| 69 |
+
)
|
| 70 |
+
st.session_state.feedback = {"feedback_id": str(feedback.id), "score": score}
|
| 71 |
+
st.toast("Feedback recorded!", icon="π")
|