Spaces:
Runtime error
Runtime error
File size: 5,672 Bytes
78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 2e3935b 78cd1b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import torch
from diffusers import QwenImageControlNetModel, QwenImageControlNetInpaintPipeline
from PIL import Image
import io
import base64
import os
from pathlib import Path
import gc
app = Flask(__name__)
CORS(app)
# Global variables for lazy loading
pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_models():
"""Lazy load models when first needed"""
global pipe
if pipe is not None:
return pipe
print("Loading models...")
print(f"Using device: {device}")
base_model = "Qwen/Qwen-Image"
controlnet_model = "InstantX/Qwen-Image-ControlNet-Inpainting"
try:
# Use float16 for better compatibility
dtype = torch.float16 if device == "cuda" else torch.float32
controlnet = QwenImageControlNetModel.from_pretrained(
controlnet_model,
torch_dtype=dtype,
use_safetensors=True
)
pipe = QwenImageControlNetInpaintPipeline.from_pretrained(
base_model,
controlnet=controlnet,
torch_dtype=dtype,
use_safetensors=True
)
pipe.to(device)
# Enable memory efficient attention if available
if hasattr(pipe, 'enable_attention_slicing'):
pipe.enable_attention_slicing()
print("Models loaded successfully!")
return pipe
except Exception as e:
print(f"Error loading models: {str(e)}")
raise
def image_to_base64(image):
"""Convert PIL Image to base64 string"""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
def base64_to_image(base64_string):
"""Convert base64 string to PIL Image"""
if ',' in base64_string:
base64_string = base64_string.split(',')[1]
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
return image
@app.route('/')
def home():
return jsonify({
"status": "running",
"model": "Qwen-Image-ControlNet-Inpainting",
"device": "cuda" if torch.cuda.is_available() else "cpu"
})
@app.route('/inpaint', methods=['POST'])
def inpaint():
try:
# Load models on first request
pipeline = load_models()
data = request.json
# Get parameters
prompt = data.get('prompt', '')
negative_prompt = data.get('negative_prompt', '')
image_base64 = data.get('image')
mask_base64 = data.get('mask')
num_steps = int(data.get('num_steps', 30))
cfg_scale = float(data.get('cfg_scale', 4.0))
controlnet_scale = float(data.get('controlnet_scale', 1.0))
seed = int(data.get('seed', 42))
# Validate inputs
if not prompt:
return jsonify({"error": "Prompt is required"}), 400
if not image_base64 or not mask_base64:
return jsonify({"error": "Image and mask are required"}), 400
# Convert base64 to images
control_image = base64_to_image(image_base64)
control_mask = base64_to_image(mask_base64)
# Resize if too large to prevent OOM
max_size = 1024
if control_image.width > max_size or control_image.height > max_size:
ratio = max_size / max(control_image.width, control_image.height)
new_size = (int(control_image.width * ratio), int(control_image.height * ratio))
control_image = control_image.resize(new_size, Image.LANCZOS)
control_mask = control_mask.resize(new_size, Image.LANCZOS)
# Ensure mask is in L mode (grayscale)
if control_mask.mode != 'L':
control_mask = control_mask.convert('L')
# Generate image
print(f"Generating image with prompt: {prompt}")
generator = torch.Generator(device=pipeline.device).manual_seed(seed)
result = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
control_image=control_image,
control_mask=control_mask,
controlnet_conditioning_scale=controlnet_scale,
width=control_image.size[0],
height=control_image.size[1],
num_inference_steps=num_steps,
true_cfg_scale=cfg_scale,
generator=generator,
).images[0]
# Convert result to base64
result_base64 = image_to_base64(result)
# Clear memory
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
return jsonify({
"success": True,
"image": f"data:image/png;base64,{result_base64}",
"message": "Image generated successfully"
})
except Exception as e:
print(f"Error: {str(e)}")
import traceback
traceback.print_exc()
# Clear memory on error
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
return jsonify({
"success": False,
"error": str(e)
}), 500
@app.route('/health', methods=['GET'])
def health():
return jsonify({
"status": "healthy",
"cuda_available": torch.cuda.is_available(),
"device": device,
"models_loaded": pipe is not None
})
if __name__ == '__main__':
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port, debug=False) |