# coding=utf-8 # Copyright 2025 AIDAS Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ["TOKENIZERS_PARALLELISM"] = "true" from PIL import Image from tqdm import tqdm import numpy as np import torch import wandb import cv2 from models import MAGVITv2, MMadaConfig, MMadaModelLM from training.prompting_utils import UniversalPrompting from training.utils import get_config, flatten_omega_conf, image_transform from transformers import AutoTokenizer, AutoConfig def resize_vocab(model, config): print(f"Resizing token embeddings to {config.new_vocab_size}") model.resize_token_embeddings(config.new_vocab_size) def get_vq_model_class(model_type): if model_type == "magvitv2": return MAGVITv2 else: raise ValueError(f"model_type {model_type} not supported.") def inference_video(): pass def load_video( video_path, config, uni_prompting, vq_model=None, device='cuda', sample='uniform', num_frames=8 ): """ args: video_path: path to the video file return: video frames as a list of images """ cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise IOError(f"Could not open video file {video_path}") frames = [] while True: ret, frame = cap.read() if not ret: break # Convert BGR to RGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(Image.fromarray(frame)) cap.release() total_frames = len(frames) if total_frames < num_frames: raise ValueError(f"Video {video_path} has less than 8 frames, got {total_frames} frames.") if sample == 'uniform': indices = np.linspace(0, total_frames - 1, num_frames).astype(int) elif sample == 'random': raise NotImplementedError("Random sampling not implemented yet.") else: raise ValueError(f"Sampling method {sample} not supported.") sampled_frames = [] sampled_frames_tokens = [] for idx in indices: frame = frames[idx] frame = image_transform(frame, resolution=config.dataset.params.resolution).to(device) sampled_frames.append(frame.unsqueeze(0)) sampled_frames_tokens.append( vq_model.get_code(frame.unsqueeze(0)) + len(uni_prompting.text_tokenizer) ) # num_frames * [num_frames, seq_len] -> [1, num_frames * seq_len] video_tokens = torch.cat(sampled_frames_tokens, dim=1) return sampled_frames, video_tokens def main(): config = get_config() resume_wandb_run = config.wandb.resume run_id = config.wandb.get("run_id", None) if run_id is None: resume_wandb_run = False run_id = wandb.util.generate_id() config.wandb.run_id = run_id wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} wandb.init( project="demo", name=config.experiment.name + '_video', config=wandb_config, ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left") uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>", "<|v2t|>"), ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True) vq_model = get_vq_model_class(config.model.vq_model.type) vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) vq_model.requires_grad_(False) vq_model.eval() train_step = config.step trained_checkpoint_path = f"/home/work/AIDAS/ckpts/omada/omada-training-stage1/checkpoint-{train_step}/unwrapped_model" model = MMadaModelLM.from_pretrained(trained_checkpoint_path, trust_remote_code=True, torch_dtype=torch.bfloat16, config="/home/work/AIDAS/ckpts/omada/omada-training-stage1/config.json") # model = MMadaModelLM.from_pretrained("Gen-Verse/MMaDA-8B-MixCoT", trust_remote_code=True, torch_dtype=torch.bfloat16) model.to(device) mask_token_id = model.config.mask_token_id temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 1 # retain only the top_k most likely tokens, clamp others to have 0 probability file_list = os.listdir(config.video_image_root) file_list = [f for f in file_list if f.lower().endswith(('.mp4'))] responses = ['' for i in range(len(file_list))] videos = [] config.question = config.question.split(' *** ') for i, file_name in enumerate(tqdm(file_list)): video_path = os.path.join(config.video_image_root, file_name) print("current video path:", video_path) video_frames, video_tokens = load_video( video_path, config, uni_prompting, vq_model=vq_model, device=device, sample='uniform', num_frames=8 ) print("video tokens shape:", video_tokens.shape) batch_size = 1 for question in config.question: input_ids = uni_prompting.text_tokenizer(['<|start_header_id|>user<|end_header_id|>\n' + question +'<|start_header_id|>assistant<|end_header_id|>\n'])['input_ids'] input_ids = torch.tensor(input_ids).to(device) input_ids = torch.cat([ (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|v2t|>']).to(device), (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), video_tokens, (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device), input_ids ], dim=1).long() print(f"input_ids shape: {input_ids.shape}") output_ids = model.mmu_generate(input_ids, max_new_tokens=128, steps=128, block_length=128) text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True) print(text) responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n' # images = torch.cat(images, dim=0) # images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) # images *= 255.0 # images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) # pil_images = [Image.fromarray(image) for image in images] # wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)] # wandb.log({"multimodal understanding": wandb_images}, step=0) if __name__ == '__main__': main()