# coding=utf-8 # Copyright 2025 MMaDA Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import inspect import sys os.environ["TOKENIZERS_PARALLELISM"] = "true" from PIL import Image from tqdm import tqdm import numpy as np import torch import wandb from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig from training.prompting_utils import UniversalPrompting from training.utils import get_config, flatten_omega_conf, image_transform from transformers import AutoTokenizer, AutoConfig, AutoModel import torch.nn.functional as F import argparse from datasets import load_dataset def resize_vocab(model, config): print(f"Resizing token embeddings to {config.new_vocab_size}") model.resize_token_embeddings(config.new_vocab_size) def get_vq_model_class(model_type): if model_type == "magvitv2": return MAGVITv2 else: raise ValueError(f"model_type {model_type} not supported.") if __name__ == '__main__': config = get_config() resume_wandb_run = config.wandb.resume run_id = config.wandb.get("run_id", None) if run_id is None: resume_wandb_run = False run_id = wandb.util.generate_id() config.wandb.run_id = run_id wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} wandb.init( project="inference", name=config.experiment.name + '_i2i', config=wandb_config, ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left") uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True) vq_model = get_vq_model_class(config.model.vq_model.type) vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) vq_model.requires_grad_(False) vq_model.eval() model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) model.to(device) mask_token_id = model.config.mask_token_id # image_preprocessor = image_transform(resolution=config.dataset.params.resolution, is_train=False) # print(f"Loading dataset directly from: {config.hf_data_dir}") dataset = load_dataset("timbrooks/instructpix2pix-clip-filtered", split="train") # dataset = dataset.select(range(config.num_samples)) print(f"Processing {len(dataset)} samples.") # config.training.batch_size = config.batch_size config.training.batch_size = 1 config.training.guidance_scale = config.guidance_scale config.training.generation_timesteps = config.generation_timesteps with open(config.dataset.params.validation_prompts_file, "r") as f: validation_prompts = f.read().splitlines() for step, sample in enumerate(tqdm(dataset)): input_image = sample['original_image'].convert("RGB") prompts = [sample['edit_prompt']] image = image_transform(input_image,resolution=config.dataset.params.resolution).unsqueeze(0).to(device) input_image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer) output_image_placeholder = torch.ones((len(prompts), config.model.mmada.num_vq_tokens), dtype=torch.long, device=device) * mask_token_id input_ids, attention_mask = uni_prompting( (prompts, input_image_tokens, output_image_placeholder), 'i2i_gen' ) if config.training.guidance_scale > 0: uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(prompts), input_image_tokens, output_image_placeholder), 'i2i_gen') else: uncond_input_ids = None uncond_attention_mask = None if config.get("mask_schedule", None) is not None: schedule = config.mask_schedule.schedule args = config.mask_schedule.get("params", {}) mask_schedule = get_mask_schedule(schedule, **args) else: mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine")) with torch.no_grad(): gen_token_ids = model.i2i_generate( input_ids=input_ids, uncond_input_ids=uncond_input_ids, attention_mask=attention_mask, uncond_attention_mask=uncond_attention_mask, guidance_scale=config.training.guidance_scale, temperature=config.training.get("generation_temperature", 1.0), timesteps=config.training.generation_timesteps, noise_schedule=mask_schedule, noise_type=config.training.get("noise_type", "mask"), seq_len=config.model.mmada.num_vq_tokens, uni_prompting=uni_prompting, config=config, ) gen_token_ids = torch.clamp(gen_token_ids, max=config.model.mmada.codebook_size - 1, min=0) images = vq_model.decode_code(gen_token_ids) images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) images *= 255.0 images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) pil_images = [Image.fromarray(image) for image in images] wandb_images = [] pil_images = [Image.fromarray(image) for image in images] generated_image = pil_images[0] original_image = input_image caption = f"Prompt: {prompts}" wandb.log({ "Image-to-Image Results": [ wandb.Image(original_image, caption=f"Original (Step {step})"), wandb.Image(generated_image, caption=f"Edited - {caption} (Step {step})") ] }, step=step)