Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2025 MMaDA Team | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import inspect | |
| import sys | |
| os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import numpy as np | |
| import torch | |
| import wandb | |
| from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig | |
| from training.prompting_utils import UniversalPrompting | |
| from training.utils import get_config, flatten_omega_conf, image_transform | |
| from transformers import AutoTokenizer, AutoConfig, AutoModel | |
| import torch.nn.functional as F | |
| def resize_vocab(model, config): | |
| print(f"Resizing token embeddings to {config.new_vocab_size}") | |
| model.resize_token_embeddings(config.new_vocab_size) | |
| def get_vq_model_class(model_type): | |
| if model_type == "magvitv2": | |
| return MAGVITv2 | |
| else: | |
| raise ValueError(f"model_type {model_type} not supported.") | |
| if __name__ == '__main__': | |
| config = get_config() | |
| resume_wandb_run = config.wandb.resume | |
| run_id = config.wandb.get("run_id", None) | |
| if run_id is None: | |
| resume_wandb_run = False | |
| run_id = wandb.util.generate_id() | |
| config.wandb.run_id = run_id | |
| wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)} | |
| wandb.init( | |
| project="demo", | |
| name=config.experiment.name + '_t2i', | |
| config=wandb_config, | |
| ) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left") | |
| uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True) | |
| vq_model = get_vq_model_class(config.model.vq_model.type) | |
| vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device) | |
| vq_model.requires_grad_(False) | |
| vq_model.eval() | |
| print(vq_model) | |
| sys.exit() | |
| model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) | |
| model.to(device) | |
| mask_token_id = model.config.mask_token_id | |
| if config.get("validation_prompts_file", None) is not None: | |
| config.dataset.params.validation_prompts_file = config.validation_prompts_file | |
| config.training.batch_size = config.batch_size | |
| config.training.guidance_scale = config.guidance_scale | |
| config.training.generation_timesteps = config.generation_timesteps | |
| with open(config.dataset.params.validation_prompts_file, "r") as f: | |
| validation_prompts = f.read().splitlines() | |
| for step in tqdm(range(0, len(validation_prompts), config.training.batch_size)): | |
| prompts = validation_prompts[step:step + config.training.batch_size] | |
| image_tokens = torch.ones((len(prompts), config.model.mmada.num_vq_tokens), | |
| dtype=torch.long, device=device) * mask_token_id | |
| input_ids, attention_mask = uni_prompting((prompts, image_tokens), 't2i_gen') | |
| if config.training.guidance_scale > 0: | |
| uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen') | |
| else: | |
| uncond_input_ids = None | |
| uncond_attention_mask = None | |
| if config.get("mask_schedule", None) is not None: | |
| schedule = config.mask_schedule.schedule | |
| args = config.mask_schedule.get("params", {}) | |
| mask_schedule = get_mask_schedule(schedule, **args) | |
| else: | |
| mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine")) | |
| with torch.no_grad(): | |
| gen_token_ids = model.t2i_generate( | |
| input_ids=input_ids, | |
| uncond_input_ids=uncond_input_ids, | |
| attention_mask=attention_mask, | |
| uncond_attention_mask=uncond_attention_mask, | |
| guidance_scale=config.training.guidance_scale, | |
| temperature=config.training.get("generation_temperature", 1.0), | |
| timesteps=config.training.generation_timesteps, | |
| noise_schedule=mask_schedule, | |
| noise_type=config.training.get("noise_type", "mask"), | |
| seq_len=config.model.mmada.num_vq_tokens, | |
| uni_prompting=uni_prompting, | |
| config=config, | |
| ) | |
| gen_token_ids = torch.clamp(gen_token_ids, max=config.model.mmada.codebook_size - 1, min=0) | |
| images = vq_model.decode_code(gen_token_ids) | |
| images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0) | |
| images *= 255.0 | |
| images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
| pil_images = [Image.fromarray(image) for image in images] | |
| wandb_images = [wandb.Image(image, caption=prompts[i]) for i, image in enumerate(pil_images)] | |
| wandb.log({"generated_images": wandb_images}, step=step) | |