Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,697 Bytes
05fc139 7bfbdc3 05fc139 7bfbdc3 e7c040d 05fc139 e7b4b89 05fc139 e7b4b89 7bfbdc3 e7b4b89 05fc139 e7b4b89 05fc139 e7b4b89 05fc139 668aead 05fc139 668aead 05fc139 e7b4b89 05fc139 06b0a1f 05fc139 e7b4b89 05fc139 e7b4b89 05fc139 88f06d8 05fc139 668aead 05fc139 df89a6a 06b0a1f df89a6a 06b0a1f df89a6a 06b0a1f df89a6a 06b0a1f df89a6a 06b0a1f df89a6a 06b0a1f c32f7bb bce1db7 c32f7bb 06b0a1f 333ef29 06b0a1f c32f7bb 333ef29 06b0a1f 2bab052 06b0a1f e7c040d 06b0a1f df89a6a e7c040d df89a6a 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 e7c040d 05fc139 e7c040d 05fc139 e7b4b89 06b0a1f 05fc139 e7b4b89 05fc139 e7b4b89 05fc139 06b0a1f 05fc139 333ef29 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f df89a6a 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 05fc139 06b0a1f 2bab052 05fc139 19f9f59 75cb19c bce1db7 19f9f59 82bd956 19f9f59 82bd956 333ef29 06b0a1f df89a6a 06b0a1f df89a6a 06b0a1f df89a6a 06b0a1f e7c040d 05fc139 e7c040d 05fc139 06b0a1f e7c040d 06b0a1f e7c040d 06b0a1f e7c040d 05fc139 e7c040d 05fc139 7bfbdc3 88f06d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
"""
ZeroGPU-friendly Gradio entrypoint for OMada demo.
- Downloads checkpoint + assets + style centroids from Hugging Face Hub
- Instantiates OmadaDemo once (global)
- Exposes 10 modalities via Gradio tabs
- Uses @spaces.GPU only on inference handlers so GPU is allocated per request
"""
import os
import sys
import subprocess
import importlib
from pathlib import Path
from typing import List
import gradio as gr
import spaces
from packaging.version import parse as parse_version
# ---------------------------
# Project roots & sys.path
# ---------------------------
PROJECT_ROOT = Path(__file__).resolve().parent
MMADA_ROOT = PROJECT_ROOT / "MMaDA"
if str(MMADA_ROOT) not in sys.path:
sys.path.insert(0, str(MMADA_ROOT))
EMOVA_ROOT = PROJECT_ROOT / "EMOVA_speech_tokenizer"
if str(EMOVA_ROOT) not in sys.path:
sys.path.insert(0, str(EMOVA_ROOT))
# ---------------------------
# HuggingFace Hub helper
# ---------------------------
def ensure_hf_hub(target: str = "0.36.0"):
"""
Make sure huggingface_hub stays <1.0 to satisfy transformers/tokenizers.
"""
try:
import huggingface_hub as hub
except ImportError:
subprocess.check_call(
[sys.executable, "-m", "pip", "install", f"huggingface-hub=={target}", "--no-cache-dir"]
)
import huggingface_hub as hub
if parse_version(hub.__version__) >= parse_version("1.0.0"):
subprocess.check_call(
[sys.executable, "-m", "pip", "install", f"huggingface-hub=={target}", "--no-cache-dir"]
)
hub = importlib.reload(hub)
# Backfill missing constants in older hub versions to avoid AttributeError.
try:
import huggingface_hub.constants as hub_consts # type: ignore
except Exception:
hub_consts = None
if hub_consts and not hasattr(hub_consts, "HF_HUB_ENABLE_HF_TRANSFER"):
setattr(hub_consts, "HF_HUB_ENABLE_HF_TRANSFER", False)
return hub
snapshot_download = ensure_hf_hub().snapshot_download
# ---------------------------
# OMada demo imports
# ---------------------------
from inference.gradio_multimodal_demo_inst import ( # noqa: E402
OmadaDemo,
CUSTOM_CSS,
FORCE_LIGHT_MODE_JS,
)
# ---------------------------
# HF download helpers
# ---------------------------
def download_assets() -> Path:
"""Download demo assets (logo + sample prompts/media) and return the root path."""
repo_id = os.getenv("ASSET_REPO_ID", "jaeikkim/AIDAS-Omni-Modal-Diffusion-assets")
revision = os.getenv("ASSET_REVISION", "main")
token = os.getenv("HF_TOKEN")
cache_dir = PROJECT_ROOT / "_asset_cache"
cache_dir.mkdir(parents=True, exist_ok=True)
return Path(
snapshot_download(
repo_id=repo_id,
revision=revision,
repo_type="dataset",
local_dir=cache_dir,
local_dir_use_symlinks=False,
token=token,
)
)
def download_style() -> Path:
"""Download style centroid dataset and return the root path."""
repo_id = os.getenv("STYLE_REPO_ID", "jaeikkim/aidas-style-centroid")
revision = os.getenv("STYLE_REVISION", "main")
token = os.getenv("HF_TOKEN")
cache_dir = PROJECT_ROOT / "_style_cache"
cache_dir.mkdir(parents=True, exist_ok=True)
return Path(
snapshot_download(
repo_id=repo_id,
revision=revision,
repo_type="dataset",
local_dir=cache_dir,
local_dir_use_symlinks=False,
token=token,
)
)
def download_checkpoint() -> Path:
"""Download checkpoint snapshot and return an `unwrapped_model` directory."""
local_override = os.getenv("MODEL_CHECKPOINT_PATH")
if local_override:
override_path = Path(local_override).expanduser()
if override_path.name != "unwrapped_model":
nested = override_path / "unwrapped_model"
if nested.is_dir():
override_path = nested
if not override_path.exists():
raise FileNotFoundError(f"MODEL_CHECKPOINT_PATH does not exist: {override_path}")
return override_path
repo_id = os.getenv("MODEL_REPO_ID", "jaeikkim/AIDAS-Omni-Modal-Diffusion")
revision = os.getenv("MODEL_REVISION", "main")
token = os.getenv("HF_TOKEN")
cache_dir = PROJECT_ROOT / "_ckpt_cache"
cache_dir.mkdir(parents=True, exist_ok=True)
snapshot_path = Path(
snapshot_download(
repo_id=repo_id,
revision=revision,
repo_type="model",
local_dir=cache_dir,
local_dir_use_symlinks=False,
token=token,
)
)
if snapshot_path.name == "unwrapped_model":
return snapshot_path
nested = snapshot_path / "unwrapped_model"
if nested.is_dir():
return nested
aliased = snapshot_path.parent / "unwrapped_model"
if not aliased.exists():
aliased.symlink_to(snapshot_path, target_is_directory=True)
return aliased
# ---------------------------
# Assets (for examples + logo)
# ---------------------------
ASSET_ROOT = download_assets()
STYLE_ROOT = download_style()
LOGO_PATH = ASSET_ROOT / "logo.png" # optional
def _load_text_examples(path: Path):
if not path.exists():
return []
lines = [
ln.strip()
for ln in path.read_text(encoding="utf-8").splitlines()
if ln.strip()
]
return [[ln] for ln in lines]
def _load_media_examples(subdir: str, suffixes):
d = ASSET_ROOT / subdir
if not d.exists():
return []
ex = []
for p in sorted(d.iterdir()):
if p.is_file() and p.suffix.lower() in suffixes:
ex.append([str(p)])
return ex
def _load_i2i_examples():
d = ASSET_ROOT / "i2i"
if not d.exists():
return []
# μ΄λ―Έμ§ νμΌλ€ (image1.jpeg, image2.png, ...)
image_files = sorted(
[p for p in d.iterdir() if p.suffix.lower() in {".png", ".jpg", ".jpeg", ".webp"}]
)
# ν
μ€νΈ νμΌλ€ (text1.txt, text2.txt, ...)
text_files = sorted(
[p for p in d.iterdir() if p.suffix.lower() == ".txt"]
)
n = min(len(image_files), len(text_files))
examples = []
for i in range(2):
img_path = image_files[i]
txt_path = text_files[i]
instruction = txt_path.read_text(encoding="utf-8").strip()
if not instruction:
continue
# Gradio Examples νμ: [image, instruction_text]
examples.append([str(img_path), instruction])
return examples
def _load_ti2ti_examples():
"""Load TI2TI examples: pairs of source image + instruction text."""
d = ASSET_ROOT / "ti2ti"
if not d.exists():
return []
src_files = sorted(
[p for p in d.iterdir() if p.is_file() and p.name.endswith("_src.png")],
)
txt_files = {p.name.replace("_instr.txt", ""): p for p in d.iterdir() if p.is_file() and p.name.endswith("_instr.txt")}
examples = []
for src in src_files:
stem = src.name.replace("_src.png", "")
txt = txt_files.get(stem)
if not txt:
continue
instruction = txt.read_text(encoding="utf-8").strip()
if not instruction:
continue
examples.append([str(src), instruction])
return examples
# text-based examples
T2S_EXAMPLES = _load_text_examples(ASSET_ROOT / "t2s" / "text.txt")
CHAT_EXAMPLES = _load_text_examples(ASSET_ROOT / "chat" / "text.txt")
T2I_EXAMPLES = _load_text_examples(ASSET_ROOT / "t2i" / "text.txt")
I2I_EXAMPLES = _load_i2i_examples()
TI2TI_EXAMPLES = _load_ti2ti_examples()
# audio / video / image examples
S2T_EXAMPLES = _load_media_examples("s2t", {".wav", ".mp3", ".flac", ".ogg"})
S2S_EXAMPLES = _load_media_examples("s2s", {".wav", ".mp3", ".flac", ".ogg"})
V2T_EXAMPLES = _load_media_examples("v2t", {".mp4", ".mov", ".avi", ".webm"})
V2S_EXAMPLES = _load_media_examples("v2t", {".mp4", ".mov", ".avi", ".webm"})
# MMU images (and fallback for I2S)
MMU_DIR = ASSET_ROOT / "mmu"
MMU_EXAMPLES: List[List[str]] = []
if MMU_DIR.exists():
for path in sorted(
[
p
for p in MMU_DIR.iterdir()
if p.suffix.lower() in {".png", ".jpg", ".jpeg", ".webp"}
]
):
MMU_EXAMPLES.append([
str(path),
"Describe the important objects and their relationships in this image.",
])
I2S_EXAMPLES = _load_media_examples("i2s", {".png", ".jpg", ".jpeg", ".webp"})
if not I2S_EXAMPLES and MMU_EXAMPLES:
# use the first MMU sample image if no dedicated I2S example exists
I2S_EXAMPLES = [[MMU_EXAMPLES[0][0]]]
# ---------------------------
# Global OmadaDemo instance
# ---------------------------
APP = None # type: ignore
def get_app() -> OmadaDemo:
global APP
if APP is not None:
return APP
ckpt_dir = download_checkpoint()
# Wire style centroids to expected locations
style_targets = [
MMADA_ROOT / "models" / "speech_tokenization" / "condition_style_centroid",
PROJECT_ROOT
/ "EMOVA_speech_tokenizer"
/ "emova_speech_tokenizer"
/ "speech_tokenization"
/ "condition_style_centroid",
]
for starget in style_targets:
if not starget.exists():
starget.parent.mkdir(parents=True, exist_ok=True)
starget.symlink_to(STYLE_ROOT, target_is_directory=True)
default_cfg = PROJECT_ROOT / "MMaDA" / "inference" / "demo" / "demo.yaml"
legacy_cfg = PROJECT_ROOT / "MMaDA" / "configs" / "mmada_demo.yaml"
train_config = os.getenv("TRAIN_CONFIG_PATH")
if not train_config:
train_config = str(default_cfg if default_cfg.exists() else legacy_cfg)
device = os.getenv("DEVICE", "cuda")
APP = OmadaDemo(train_config=train_config, checkpoint=str(ckpt_dir), device=device)
return APP
# ---------------------------
# ZeroGPU-wrapped handlers
# ---------------------------
# (== κ·Έλλ‘, μλ΅ μμ΄ λ λΆλΆ ==)
@spaces.GPU
def t2s_handler(text, max_tokens, steps, block_len, temperature, cfg_scale, gender, emotion, speed, pitch):
app = get_app()
audio, status = app.run_t2s(
text=text,
max_new_tokens=int(max_tokens),
steps=int(steps),
block_length=int(block_len),
temperature=float(temperature),
cfg_scale=float(cfg_scale),
gender_choice=gender,
emotion_choice=emotion,
speed_choice=speed,
pitch_choice=pitch,
)
return audio, status
@spaces.GPU
def s2s_handler(audio_path, max_tokens, steps, block_len, temperature, cfg_scale):
app = get_app()
audio, status = app.run_s2s(
audio_path=audio_path,
max_new_tokens=int(max_tokens),
steps=int(steps),
block_length=int(block_len),
temperature=float(temperature),
cfg_scale=float(cfg_scale),
)
return audio, status
@spaces.GPU
def s2t_handler(audio_path, steps, block_len, max_tokens, remasking):
app = get_app()
text, status = app.run_s2t(
audio_path=audio_path,
steps=int(steps),
block_length=int(block_len),
max_new_tokens=int(max_tokens),
remasking=str(remasking),
)
return text, status
@spaces.GPU
def v2t_handler(video, steps, block_len, max_tokens):
app = get_app()
text, status = app.run_v2t(
video_path=video,
steps=int(steps),
block_length=int(block_len),
max_new_tokens=int(max_tokens),
)
return text, status
@spaces.GPU
def v2s_handler(video, message, max_tokens, steps, block_len, temperature, cfg_scale):
app = get_app()
audio, status = app.run_v2s(
video_path=video,
message=message,
max_new_tokens=int(max_tokens),
steps=int(steps),
block_length=int(block_len),
temperature=float(temperature),
cfg_scale=float(cfg_scale),
)
return audio, status
@spaces.GPU
def i2s_handler(image, message, max_tokens, steps, block_len, temperature, cfg_scale):
app = get_app()
audio, status = app.run_i2s(
image=image,
message=message,
max_new_tokens=int(max_tokens),
steps=int(steps),
block_length=int(block_len),
temperature=float(temperature),
cfg_scale=float(cfg_scale),
)
return audio, status
@spaces.GPU
def chat_handler(message, max_tokens, steps, block_len, temperature):
app = get_app()
text, status = app.run_chat(
message=message,
max_new_tokens=int(max_tokens),
steps=int(steps),
block_length=int(block_len),
temperature=float(temperature),
)
return text, status
@spaces.GPU
def mmu_handler(image, question, max_tokens, steps, block_len, temperature):
app = get_app()
text, status = app.run_mmu(
images=image,
message=question,
max_new_tokens=int(max_tokens),
steps=int(steps),
block_length=int(block_len),
temperature=float(temperature),
)
return text, status
@spaces.GPU
def t2i_handler(prompt, timesteps, temperature, guidance):
app = get_app()
image, status = app.run_t2i(
prompt=prompt,
timesteps=int(timesteps),
temperature=float(temperature),
guidance_scale=float(guidance),
)
return image, status
@spaces.GPU
def i2i_handler(instruction, image, timesteps, temperature, guidance):
app = get_app()
image_out, status = app.run_i2i(
instruction=instruction,
source_image=image,
timesteps=int(timesteps),
temperature=float(temperature),
guidance_scale=float(guidance),
)
return image_out, status
@spaces.GPU
def ti2ti_handler(instruction, image, text_tokens, timesteps_image, timesteps_text, temperature, guidance):
app = get_app()
image_out, text_out, status = app.run_ti2ti(
instruction=instruction,
source_image=image,
text_tokens=int(text_tokens),
timesteps_image=int(timesteps_image),
timesteps_text=int(timesteps_text),
temperature=float(temperature),
guidance_scale=float(guidance),
)
return image_out, text_out, status
# ---------------------------
# Gradio UI (10 tabs + examples)
# ---------------------------
theme = gr.themes.Soft(primary_hue="blue", neutral_hue="gray")
with gr.Blocks(
title="AIDAS Lab @ SNU - Omni-modal Diffusion",
css=CUSTOM_CSS,
theme=theme,
js=FORCE_LIGHT_MODE_JS,
) as demo:
with gr.Row():
if LOGO_PATH.exists():
gr.Image(
value=str(LOGO_PATH),
show_label=False,
height=80,
interactive=False,
)
gr.Markdown(
"## Omni-modal Diffusion Foundation Model\n"
"### AIDAS Lab @ SNU"
)
# ---- T2S ----
with gr.Tab("Text β Speech (T2S)"):
with gr.Row():
t2s_text = gr.Textbox(
label="Input text",
lines=4,
placeholder="Type the speech you want to synthesize...",
)
t2s_audio = gr.Audio(label="Generated speech", type="numpy")
t2s_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
t2s_max_tokens = gr.Slider(2, 512, value=384, step=2, label="Speech token length")
t2s_steps = gr.Slider(2, 512, value=128, step=2, label="Total refinement steps")
t2s_block = gr.Slider(2, 512, value=128, step=2, label="Block length")
t2s_temperature = gr.Slider(0.0, 2.0, value=1.0, step=0.05, label="Sampling temperature")
t2s_cfg = gr.Slider(0.0, 6.0, value=3.5, step=0.1, label="CFG scale")
with gr.Row():
t2s_gender = gr.Dropdown(["random", "female", "male"], value="random", label="Gender")
t2s_emotion = gr.Dropdown(["random", "angry", "happy", "neutral", "sad"], value="random", label="Emotion")
with gr.Row():
t2s_speed = gr.Dropdown(["random", "normal", "fast", "slow"], value="random", label="Speed")
t2s_pitch = gr.Dropdown(["random", "normal", "high", "low"], value="random", label="Pitch")
if T2S_EXAMPLES:
with gr.Accordion("Sample prompts", open=False):
gr.Examples(
examples=T2S_EXAMPLES,
inputs=[t2s_text],
examples_per_page=6,
)
t2s_btn = gr.Button("Generate speech", variant="primary")
t2s_btn.click(
t2s_handler,
inputs=[
t2s_text,
t2s_max_tokens,
t2s_steps,
t2s_block,
t2s_temperature,
t2s_cfg,
t2s_gender,
t2s_emotion,
t2s_speed,
t2s_pitch,
],
outputs=[t2s_audio, t2s_status],
)
# ---- S2S ----
with gr.Tab("Speech β Speech (S2S)"):
s2s_audio_in = gr.Audio(type="filepath", label="Source speech", sources=["microphone", "upload"])
s2s_audio_out = gr.Audio(type="numpy", label="Reply speech")
s2s_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
s2s_max_tokens = gr.Slider(2, 512, value=256, step=2, label="Reply token length")
s2s_steps = gr.Slider(2, 512, value=128, step=2, label="Refinement steps")
s2s_block = gr.Slider(2, 512, value=128, step=2, label="Block length")
s2s_temperature = gr.Slider(0.0, 2.0, value=0.0, step=0.05, label="Sampling temperature")
s2s_cfg = gr.Slider(0.0, 6.0, value=4.0, step=0.1, label="CFG scale")
if S2S_EXAMPLES:
with gr.Accordion("Sample clips", open=False):
gr.Examples(
examples=S2S_EXAMPLES,
inputs=[s2s_audio_in],
examples_per_page=4,
)
s2s_btn = gr.Button("Generate reply speech", variant="primary")
s2s_btn.click(
s2s_handler,
inputs=[
s2s_audio_in,
s2s_max_tokens,
s2s_steps,
s2s_block,
s2s_temperature,
s2s_cfg,
],
outputs=[s2s_audio_out, s2s_status],
)
# ---- S2T ----
with gr.Tab("Speech β Text (S2T)"):
s2t_audio_in = gr.Audio(type="filepath", label="Speech input", sources=["microphone", "upload"])
s2t_text_out = gr.Textbox(label="Transcription", lines=4)
s2t_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
s2t_steps = gr.Slider(2, 512, value=128, step=2, label="Denoising steps")
s2t_block = gr.Slider(2, 512, value=128, step=2, label="Block length")
s2t_max_tokens = gr.Slider(2, 512, value=128, step=2, label="Max new tokens")
s2t_remasking = gr.Dropdown(
["low_confidence", "random"],
value="low_confidence",
label="Remasking strategy",
)
if S2T_EXAMPLES:
with gr.Accordion("Sample clips", open=False):
gr.Examples(
examples=S2T_EXAMPLES,
inputs=[s2t_audio_in],
examples_per_page=4,
)
s2t_btn = gr.Button("Transcribe", variant="primary")
s2t_btn.click(
s2t_handler,
inputs=[s2t_audio_in, s2t_steps, s2t_block, s2t_max_tokens, s2t_remasking],
outputs=[s2t_text_out, s2t_status],
)
# ---- V2T ----
with gr.Tab("Video β Text (V2T)"):
v2t_video_in = gr.Video(
label="Upload or record video",
height=256,
sources=["upload", "webcam"],
)
v2t_text_out = gr.Textbox(label="Caption / answer", lines=4)
v2t_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
v2t_steps = gr.Slider(2, 512, value=64, step=2, label="Denoising steps")
v2t_block = gr.Slider(2, 512, value=64, step=2, label="Block length")
v2t_max_tokens = gr.Slider(2, 512, value=64, step=2, label="Max new tokens")
if V2T_EXAMPLES:
with gr.Accordion("Sample videos", open=False):
gr.Examples(
examples=V2T_EXAMPLES,
inputs=[v2t_video_in],
examples_per_page=4,
)
v2t_btn = gr.Button("Generate caption", variant="primary")
v2t_btn.click(
v2t_handler,
inputs=[v2t_video_in, v2t_steps, v2t_block, v2t_max_tokens],
outputs=[v2t_text_out, v2t_status],
)
# ---- V2S ----
with gr.Tab("Video β Speech (V2S)"):
v2s_video_in = gr.Video(
label="Upload or record video",
height=256,
sources=["upload", "webcam"],
)
v2s_prompt = gr.Textbox(
label="Optional instruction",
placeholder="(Optional) e.g., 'Describe this scene in spoken form.'",
)
v2s_audio_out = gr.Audio(type="numpy", label="Generated speech")
v2s_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
v2s_max_tokens = gr.Slider(2, 512, value=256, step=2, label="Reply token length")
v2s_steps = gr.Slider(2, 512, value=128, step=2, label="Refinement steps")
v2s_block = gr.Slider(2, 512, value=128, step=2, label="Block length")
v2s_temperature = gr.Slider(0.0, 2.0, value=1.0, step=0.05, label="Sampling temperature")
v2s_cfg = gr.Slider(0.0, 6.0, value=3.0, step=0.1, label="CFG scale")
# (optional v2s examples: if you later add 'v2s' folder, same ν¨ν΄μΌλ‘ λΆμ΄λ©΄ λ¨)
if V2T_EXAMPLES:
with gr.Accordion("Sample videos", open=False):
gr.Examples(
examples=V2T_EXAMPLES,
inputs=[v2t_video_in],
examples_per_page=4,
)
v2s_btn = gr.Button("Generate speech from video", variant="primary")
v2s_btn.click(
v2s_handler,
inputs=[
v2s_video_in,
v2s_prompt,
v2s_max_tokens,
v2s_steps,
v2s_block,
v2s_temperature,
v2s_cfg,
],
outputs=[v2s_audio_out, v2s_status],
)
# ---- T2I ----
with gr.Tab("Text β Image (T2I)"):
t2i_prompt = gr.Textbox(
label="Prompt",
lines=4,
placeholder="Describe the image you want to generate...",
)
t2i_image_out = gr.Image(label="Generated image")
t2i_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
t2i_timesteps = gr.Slider(4, 128, value=32, step=2, label="Timesteps")
t2i_temperature = gr.Slider(0.0, 2.0, value=1.0, step=0.05, label="Sampling temperature")
t2i_guidance = gr.Slider(0.0, 8.0, value=3.5, step=0.1, label="CFG scale")
if T2I_EXAMPLES:
with gr.Accordion("Sample prompts", open=False):
gr.Examples(
examples=T2I_EXAMPLES,
inputs=[t2i_prompt],
examples_per_page=6,
)
t2i_btn = gr.Button("Generate image", variant="primary")
t2i_btn.click(
t2i_handler,
inputs=[t2i_prompt, t2i_timesteps, t2i_temperature, t2i_guidance],
outputs=[t2i_image_out, t2i_status],
)
# ---- I2I ----
with gr.Tab("Image Editing (I2I)"):
i2i_image_in = gr.Image(type="pil", label="Reference image", sources=["upload"])
i2i_instr = gr.Textbox(
label="Editing instruction",
lines=4,
placeholder="Describe how you want to edit the image...",
)
i2i_image_out = gr.Image(label="Edited image")
i2i_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
i2i_timesteps = gr.Slider(4, 128, value=32, step=2, label="Timesteps")
i2i_temperature = gr.Slider(0.0, 2.0, value=0.3, step=0.05, label="Sampling temperature")
i2i_guidance = gr.Slider(0.0, 8.0, value=3.5, step=0.1, label="CFG scale")
if I2I_EXAMPLES:
with gr.Accordion("Sample edits", open=False):
gr.Examples(
examples=I2I_EXAMPLES,
inputs=[i2i_image_in, i2i_instr],
examples_per_page=4,
)
i2i_btn = gr.Button("Apply edit", variant="primary")
i2i_btn.click(
i2i_handler,
inputs=[i2i_instr, i2i_image_in, i2i_timesteps, i2i_temperature, i2i_guidance],
outputs=[i2i_image_out, i2i_status],
)
# ---- TI2TI ----
with gr.Tab("Text+Image β Text+Image (TI2TI)"):
ti2ti_image_in = gr.Image(type="pil", label="Source image", sources=["upload"])
ti2ti_instr = gr.Textbox(
label="Editing instruction",
lines=4,
placeholder="Describe how you want the image edited and what to say about it...",
)
ti2ti_image_out = gr.Image(label="Edited image")
ti2ti_text_out = gr.Textbox(label="Generated text", lines=4)
ti2ti_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
ti2ti_text_tokens = gr.Slider(8, 256, value=64, step=4, label="Text placeholder tokens")
ti2ti_img_steps = gr.Slider(4, 128, value=64, step=2, label="Image timesteps")
ti2ti_text_steps = gr.Slider(4, 128, value=64, step=2, label="Text timesteps")
ti2ti_temperature = gr.Slider(0.0, 2.0, value=1.0, step=0.05, label="Sampling temperature")
ti2ti_guidance = gr.Slider(0.0, 8.0, value=3.5, step=0.1, label="CFG scale")
if TI2TI_EXAMPLES:
with gr.Accordion("Sample edits", open=False):
gr.Examples(
examples=TI2TI_EXAMPLES,
inputs=[ti2ti_image_in, ti2ti_instr],
examples_per_page=4,
)
ti2ti_btn = gr.Button("Generate edited image + text", variant="primary")
ti2ti_btn.click(
ti2ti_handler,
inputs=[
ti2ti_instr,
ti2ti_image_in,
ti2ti_text_tokens,
ti2ti_img_steps,
ti2ti_text_steps,
ti2ti_temperature,
ti2ti_guidance,
],
outputs=[ti2ti_image_out, ti2ti_text_out, ti2ti_status],
)
# ---- I2S ----
with gr.Tab("Image β Speech (I2S)"):
i2s_image_in = gr.Image(type="pil", label="Image input", sources=["upload"])
i2s_prompt = gr.Textbox(
label="Optional question",
placeholder="(Optional) e.g., 'Describe this image aloud.'",
)
i2s_audio_out = gr.Audio(type="numpy", label="Spoken description")
i2s_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
i2s_max_tokens = gr.Slider(2, 512, value=256, step=2, label="Reply token length")
i2s_steps = gr.Slider(2, 512, value=256, step=2, label="Refinement steps")
i2s_block = gr.Slider(2, 512, value=256, step=2, label="Block length")
i2s_temperature = gr.Slider(0.0, 2.0, value=1.0, step=0.05, label="Sampling temperature")
i2s_cfg = gr.Slider(0.0, 6.0, value=3.0, step=0.1, label="CFG scale")
if I2S_EXAMPLES:
with gr.Accordion("Sample images", open=False):
gr.Examples(
examples=I2S_EXAMPLES,
inputs=[i2s_image_in],
examples_per_page=4,
)
i2s_btn = gr.Button("Generate spoken description", variant="primary")
i2s_btn.click(
i2s_handler,
inputs=[
i2s_image_in,
i2s_prompt,
i2s_max_tokens,
i2s_steps,
i2s_block,
i2s_temperature,
i2s_cfg,
],
outputs=[i2s_audio_out, i2s_status],
)
# ---- Chat ----
with gr.Tab("Text Chat"):
chat_in = gr.Textbox(
label="Message",
lines=4,
placeholder="Ask anything. The model will reply in text.",
)
chat_out = gr.Textbox(label="Assistant reply", lines=6)
chat_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
chat_max_tokens = gr.Slider(2, 512, value=64, step=2, label="Reply max tokens")
chat_steps = gr.Slider(2, 512, value=64, step=2, label="Refinement steps")
chat_block = gr.Slider(2, 512, value=64, step=2, label="Block length")
chat_temperature_slider = gr.Slider(0.0, 2.0, value=0.8, step=0.05, label="Sampling temperature")
if CHAT_EXAMPLES:
with gr.Accordion("Sample prompts", open=False):
gr.Examples(
examples=CHAT_EXAMPLES,
inputs=[chat_in],
examples_per_page=6,
)
chat_btn = gr.Button("Send", variant="primary")
chat_btn.click(
chat_handler,
inputs=[
chat_in,
chat_max_tokens,
chat_steps,
chat_block,
chat_temperature_slider,
],
outputs=[chat_out, chat_status],
)
# ---- MMU ----
with gr.Tab("MMU (Image β Text)"):
mmu_img = gr.Image(type="pil", label="Input image", sources=["upload"])
mmu_question = gr.Textbox(
label="Question",
lines=3,
placeholder="Ask about the scene, objects, or context of the image.",
)
mmu_answer = gr.Textbox(label="Answer", lines=6)
mmu_status = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced settings", open=False):
mmu_max_tokens = gr.Slider(2, 512, value=256, step=2, label="Answer max tokens")
mmu_steps = gr.Slider(2, 512, value=256, step=2, label="Refinement steps")
mmu_block = gr.Slider(2, 512, value=128, step=2, label="Block length")
mmu_temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Sampling temperature")
if MMU_EXAMPLES:
with gr.Accordion("Sample MMU prompts", open=False):
gr.Examples(
examples=MMU_EXAMPLES,
inputs=[mmu_img, mmu_question],
examples_per_page=1,
)
mmu_btn = gr.Button("Answer about the image", variant="primary")
mmu_btn.click(
mmu_handler,
inputs=[
mmu_img,
mmu_question,
mmu_max_tokens,
mmu_steps,
mmu_block,
mmu_temperature,
],
outputs=[mmu_answer, mmu_status],
)
if __name__ == "__main__":
demo.launch()
|