Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,416 Bytes
7bfbdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
#!/usr/bin/env python3
"""
Utility script to sanity-check data loaders defined in train_omada_inst.py
without constructing the full training stack.
Example:
python MMaDA/tools/run_dataloaders.py config=MMaDA/configs/omada_instruction_tuning.yaml \
--flows v2t --num-workers 0 --max-batches 10
"""
from __future__ import annotations
import argparse
import logging
import os
import sys
import time
from typing import Any, Dict, Iterable, List, Optional, Tuple
import torch
from omegaconf import DictConfig, OmegaConf
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
# Ensure repository root is importable when executing from arbitrary cwd.
REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
if REPO_ROOT not in sys.path:
sys.path.insert(0, REPO_ROOT)
from training.data import VideoCaptionDataset # noqa: E402
from training.utils import image_transform # noqa: E402
LOGGER = logging.getLogger("run_dataloaders")
def _parse_args() -> Tuple[argparse.Namespace, DictConfig]:
parser = argparse.ArgumentParser(description="Run Omada dataloaders without the trainer.")
parser.add_argument(
"--flows",
default="v2t",
help="Comma separated list of dataloaders to exercise (currently supports: v2t). "
"Use 'all' to run every available flow.",
)
parser.add_argument(
"--max-batches",
type=int,
default=0,
help="Stop after this many batches per loader (0 means iterate the entire epoch).",
)
parser.add_argument(
"--num-workers",
type=int,
default=None,
help="Override DataLoader num_workers (falls back to config.dataset.params.num_workers).",
)
parser.add_argument(
"--persistent-workers",
dest="persistent_workers",
action="store_true",
help="Force persistent_workers=True regardless of config.",
)
parser.add_argument(
"--no-persistent-workers",
dest="persistent_workers",
action="store_false",
help="Force persistent_workers=False regardless of config.",
)
parser.set_defaults(persistent_workers=None)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Torch manual seed for reproducibility.",
)
args, unknown = parser.parse_known_args()
cli_conf = OmegaConf.from_cli(unknown)
if "config" not in cli_conf:
parser.error("Please provide the training config via 'config=/path/to/config.yaml'.")
yaml_conf = OmegaConf.load(cli_conf.config)
merged = OmegaConf.merge(yaml_conf, cli_conf)
return args, merged
def _collate_v2t(batch: List[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
"""Minimal collate fn mirroring train_omada_inst.collate_fn_v2t."""
filtered: List[Dict[str, Any]] = [sample for sample in batch if sample is not None]
if not filtered:
return None
videos: List[torch.Tensor] = []
captions: List[Any] = []
for sample in filtered:
frames = sample.get("video")
caption = sample.get("caption")
if frames is None:
continue
try:
tensor = torch.stack(frames, dim=0)
except Exception as exc:
LOGGER.exception("Failed to stack frames for sample %s", sample)
raise exc
videos.append(tensor)
captions.append(caption)
if not videos:
return None
return {
"video": torch.stack(videos, dim=0),
"captions": captions,
}
def _build_v2t_loader(
cfg: DictConfig,
tokenizer,
*,
num_workers: int,
persistent_workers: bool,
pin_memory: bool,
) -> DataLoader:
speech_cfg = getattr(cfg.dataset.params, "video_speech_dataset", {})
if not isinstance(speech_cfg, dict):
speech_cfg = OmegaConf.to_container(speech_cfg, resolve=True)
speech_cfg = speech_cfg or {}
dataset = VideoCaptionDataset(
transform=image_transform,
tokenizer=tokenizer,
max_seq_length=int(cfg.dataset.preprocessing.max_seq_length),
resolution=int(cfg.dataset.preprocessing.resolution),
sample_method=speech_cfg.get("sample_method", "uniform"),
dataset_name=speech_cfg.get("llavavid_dataset_name", "llavavid"),
num_frames=int(speech_cfg.get("num_frames", 8)),
)
batch_size = int(max(1, cfg.training.batch_size_v2t))
LOGGER.info(
"Instantiated VideoCaptionDataset with %d samples; batch_size=%d num_workers=%d",
len(dataset),
batch_size,
num_workers,
)
return DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers if num_workers > 0 else False,
collate_fn=_collate_v2t,
drop_last=False,
)
def _iterate_loader(name: str, loader: DataLoader, max_batches: int) -> None:
LOGGER.info("Starting iteration over '%s' (max_batches=%s)", name, max_batches or "full epoch")
start = time.time()
failures = 0
processed = 0
try:
for step, batch in enumerate(loader, start=1):
if batch is None:
failures += 1
LOGGER.warning("[%s] Received empty batch at step %d", name, step)
continue
processed += batch["video"].size(0)
if max_batches and step >= max_batches:
break
except Exception as exc:
LOGGER.exception("Loader '%s' raised an exception at batch %d", name, step)
raise exc
finally:
duration = time.time() - start
LOGGER.info(
"Finished '%s': steps=%d samples=%d failures=%d elapsed=%.2fs",
name,
step if 'step' in locals() else 0,
processed,
failures,
duration,
)
def main() -> None:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%H:%M:%S",
)
args, cfg = _parse_args()
torch.manual_seed(args.seed)
pin_memory = bool(getattr(cfg.dataset.params, "pin_memory", False))
if args.num_workers is None:
num_workers = int(getattr(cfg.dataset.params, "num_workers", 0))
else:
num_workers = max(0, args.num_workers)
if args.persistent_workers is None:
persistent_workers = bool(getattr(cfg.dataset.params, "persistent_workers", False))
else:
persistent_workers = bool(args.persistent_workers)
flows_arg = [item.strip().lower() for item in args.flows.split(",") if item.strip()]
if "all" in flows_arg:
flows = {"v2t"}
else:
flows = set(flows_arg)
tokenizer = AutoTokenizer.from_pretrained(cfg.model.omada.tokenizer_path, padding_side="left")
loaders: Dict[str, DataLoader] = {}
if "v2t" in flows:
loaders["v2t"] = _build_v2t_loader(
cfg,
tokenizer,
num_workers=num_workers,
persistent_workers=persistent_workers,
pin_memory=pin_memory,
)
if not loaders:
LOGGER.error("No loaders selected. Supported flows: v2t")
sys.exit(1)
for name, loader in loaders.items():
_iterate_loader(name, loader, args.max_batches)
if __name__ == "__main__":
main()
|