File size: 7,185 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python
"""
Utility script to stress-test LLaVA-Video frame decoding in isolation.

This runs the `VideoCaptionDataset` loader on a single node so that we can
watch for files that consistently time out or wedged dataloader workers.
"""

from __future__ import annotations

import argparse
import os
import sys
import time
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional

import torch
from torch.utils.data import DataLoader

ROOT_DIR = Path(__file__).resolve().parents[2]
if str(ROOT_DIR) not in sys.path:
    sys.path.insert(0, str(ROOT_DIR))

from training import data as video_data_module  # noqa: E402
from training.data import VideoCaptionDataset  # noqa: E402
from training.utils import image_transform as default_image_transform  # noqa: E402


def _resolve_llavavid_root(root_arg: Optional[str]) -> Path:
    if root_arg:
        root = Path(root_arg).expanduser().resolve()
    else:
        root = ROOT_DIR / "data" / "video" / "LLaVA-Video-178K"
    if not root.exists():
        raise FileNotFoundError(f"LLaVA-Video root directory not found: {root}")
    return root


def _identity_collate(batch: List[Optional[Dict[str, Any]]]) -> List[Dict[str, Any]]:
    """Drop `None` samples that VideoCaptionDataset returns after repeated failures."""
    filtered = [sample for sample in batch if sample is not None]
    return filtered


def _parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(
        description="Decode-check LLaVA-Video samples with the existing dataset logic."
    )
    parser.add_argument(
        "--llavavid-root",
        type=str,
        default=None,
        help="Path to the LLaVA-Video-178K cache directory. Defaults to data/video/LLaVA-Video-178K relative to repo root.",
    )
    parser.add_argument(
        "--num-samples",
        type=int,
        default=256,
        help=(
            "Number of samples to attempt decoding (per DataLoader worker collectively). "
            "Set to -1 to sweep the entire dataset once."
        ),
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=1,
        help="Batch size for the diagnostic DataLoader.",
    )
    parser.add_argument(
        "--num-workers",
        type=int,
        default=4,
        help="Number of DataLoader workers to spawn. Set to match your training run.",
    )
    parser.add_argument(
        "--num-frames",
        type=int,
        default=8,
        help="Number of frames to request from load_video_mp4.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=256,
        help="Resolution passed to the dataset transform.",
    )
    parser.add_argument(
        "--sample-method",
        type=str,
        default="uniform",
        choices=("uniform", "random"),
        help="Frame sampling strategy.",
    )
    parser.add_argument(
        "--report-every",
        type=int,
        default=10,
        help="Print a progress line every N successfully decoded samples.",
    )
    parser.add_argument(
        "--timeout",
        type=float,
        default=30.0,
        help="Maximum seconds to allow a batch to hang before treating it as a stall.",
    )
    return parser.parse_args()


def _maybe_set_thread_limits() -> None:
    # Avoid oversubscribing CPU threads when the loader uses multiple workers.
    os.environ.setdefault("OMP_NUM_THREADS", "1")
    os.environ.setdefault("MKL_NUM_THREADS", "1")
    os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
    os.environ.setdefault("NUMEXPR_NUM_THREADS", "1")


def main() -> None:
    args = _parse_args()
    _maybe_set_thread_limits()

    llavavid_root = _resolve_llavavid_root(args.llavavid_root)
    print(f"[INFO] Using LLaVA-Video root: {llavavid_root}")

    original_loader = video_data_module.load_video_mp4

    def traced_loader(*loader_args, **loader_kwargs):
        video_path = loader_kwargs.get("video_path")
        if video_path is None and loader_args:
            video_path = loader_args[0]
        start = time.time()
        try:
            frames = original_loader(*loader_args, **loader_kwargs)
        except Exception as exc:  # pylint: disable=broad-except
            duration = time.time() - start
            print(f"[ERROR] {video_path} raised {exc.__class__.__name__} after {duration:.2f}s: {exc}")
            raise
        duration = time.time() - start
        status = "OK" if frames else "NONE"
        print(f"[TRACE] {status:>4} | {duration:6.2f}s | {video_path}")
        return frames

    video_data_module.load_video_mp4 = traced_loader

    try:
        dataset = VideoCaptionDataset(
            transform=default_image_transform,
            tokenizer=None,
            max_seq_length=256,
            resolution=args.resolution,
            dataset_name="llavavid",
            llavavid_path=str(llavavid_root),
            llavavid_local_files_only=True,
            sample_method=args.sample_method,
            num_frames=args.num_frames,
        )

        if len(dataset) == 0:
            print("[ERROR] Dataset returned zero length. Check the root directory/config.")
            sys.exit(1)

        dataloader = DataLoader(
            dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers,
            collate_fn=_identity_collate,
            pin_memory=False,
            drop_last=False,
        )

        print(
            f"[INFO] Starting decode sweep: "
            f"{args.num_samples} samples, batch_size={args.batch_size}, num_workers={args.num_workers}"
        )

        decoded = 0
        attempted = 0
        failed = 0
        start_time = time.time()
        last_report = start_time

        for batch_idx, batch in enumerate(dataloader, start=1):
            expected = args.batch_size
            actual = len(batch)

            attempted += expected
            failed += max(expected - actual, 0)
            decoded += sum(1 for sample in batch if sample.get("video"))

            if args.num_samples > 0 and decoded >= args.num_samples:
                break

            now = time.time()
            if args.report_every > 0 and decoded and decoded % args.report_every == 0:
                elapsed = now - last_report
                total_elapsed = now - start_time
                print(
                    f"[INFO] {decoded} successful samples "
                    f"(attempted={attempted}, failed={failed}) "
                    f"in {total_elapsed:.1f}s (+{elapsed:.1f}s since last report)."
                )
                last_report = now

            if now - start_time > args.timeout:
                print(
                    f"[WARN] Exceeded timeout of {args.timeout}s without reaching target samples."
                )
                break

        total_elapsed = time.time() - start_time
        print(
            f"[RESULT] Completed sweep: decoded={decoded}, attempted={attempted}, "
            f"failed={failed}, elapsed={total_elapsed:.1f}s."
        )
    finally:
        video_data_module.load_video_mp4 = original_loader


if __name__ == "__main__":
    main()