File size: 7,555 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# coding=utf-8
# Copyright 2025 AIDAS Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
import wandb
import cv2
from models import MAGVITv2, MMadaConfig, MMadaModelLM
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf, image_transform
from transformers import AutoTokenizer, AutoConfig

def resize_vocab(model, config):
    print(f"Resizing token embeddings to {config.new_vocab_size}")
    model.resize_token_embeddings(config.new_vocab_size)

def get_vq_model_class(model_type):
    if model_type == "magvitv2":
        return MAGVITv2
    else:
        raise ValueError(f"model_type {model_type} not supported.")

def inference_video():
    
    pass

def load_video(
        video_path, 
        config, 
        uni_prompting,
        vq_model=None,
        device='cuda',
        sample='uniform', 
        num_frames=4
    ):
    """
    args:
        video_path: path to the video file
        return: video frames as a list of images
    """
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise IOError(f"Could not open video file {video_path}")
    
    frames = []
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        # Convert BGR to RGB
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frames.append(Image.fromarray(frame))
        
    cap.release()
    
    total_frames = len(frames)
    
    if total_frames < num_frames:
        raise ValueError(f"Video {video_path} has less than 8 frames, got {total_frames} frames.")
    
    if sample == 'uniform':
        indices = np.linspace(0, total_frames - 1, num_frames).astype(int)
    elif sample == 'random':
        raise NotImplementedError("Random sampling not implemented yet.")
    else:
        raise ValueError(f"Sampling method {sample} not supported.")
    
    sampled_frames = []
    sampled_frames_tokens = []
    for idx in indices:
        frame = frames[idx]
        frame = image_transform(frame, resolution=config.dataset.params.resolution).to(device)
        sampled_frames.append(frame.unsqueeze(0))
        sampled_frames_tokens.append(
            torch.cat([
                (torch.ones(1, 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
                vq_model.get_code(frame.unsqueeze(0)) + len(uni_prompting.text_tokenizer),
                (torch.ones(1, 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device)
            ], dim=1)  # dim=1이면 token axis 기준 concat
        )
        
    # num_frames * [num_frames, seq_len] -> [1, num_frames * seq_len]
    video_tokens = torch.cat(sampled_frames_tokens, dim=1) 
    
    return sampled_frames, video_tokens
        
        
        
def main():
    config = get_config()
    resume_wandb_run = config.wandb.resume
    run_id = config.wandb.get("run_id", None)
    if run_id is None:
        resume_wandb_run = False
        run_id = wandb.util.generate_id()
        config.wandb.run_id = run_id

    wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}

    wandb.init(
        project="demo",
        name=config.experiment.name + '_video',
        config=wandb_config,
    )

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left")

    uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
                                       special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
                                       ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)

    vq_model = get_vq_model_class(config.model.vq_model.type)
    vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
    vq_model.requires_grad_(False)
    vq_model.eval()
    
    model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
    model.to(device)

    mask_token_id = model.config.mask_token_id

    temperature = 0.8  # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
    top_k = 1  # retain only the top_k most likely tokens, clamp others to have 0 probability
    file_list = os.listdir(config.video_image_root)
    file_list = [f for f in file_list if f.lower().endswith(('.mp4'))]
    responses = ['' for i in range(len(file_list))]
    videos = []
    config.question = config.question.split(' *** ')
    for i, file_name in enumerate(tqdm(file_list)):
        video_path = os.path.join(config.video_image_root, file_name)
        print("current video path:", video_path)
        video_frames, video_tokens = load_video(
            video_path, 
            config, 
            uni_prompting,
            vq_model=vq_model,
            device=device,
            sample='uniform', 
            num_frames=8
        )
        print("video tokens shape:", video_tokens.shape)
        batch_size = 1

        # print(video_tokens)

        for question in config.question:
            input_ids = uni_prompting.text_tokenizer(['<|start_header_id|>user<|end_header_id|>\n' + question +'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'])['input_ids']
            input_ids = torch.tensor(input_ids).to(device)

            input_ids = torch.cat([
                (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device),
                # (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
                video_tokens,
                # (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
                (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
                input_ids
            ], dim=1).long()

            # print(f"input_ids shape: {input_ids.shape}")
            # print(f"input_ids: {input_ids}")
            
            output_ids = model.mmu_generate(input_ids, max_new_tokens=1024, steps=512, block_length=64)
            text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
            print(text)
            responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n'

    # images = torch.cat(images, dim=0)
    # images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
    # images *= 255.0
    # images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
    # pil_images = [Image.fromarray(image) for image in images]

    # wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)]
    # wandb.log({"multimodal understanding": wandb_images}, step=0)


if __name__ == '__main__':
    main()