Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,865 Bytes
7bfbdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# coding=utf-8
# Copyright 2025 AIDAS Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch.nn.functional as F
import torch
import wandb
from models import MMadaModelLM
from models.modeling_emova_speech_tokenizer import EMOVASpeechTokenizer
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf
from transformers import AutoTokenizer
import argparse
# from models.modeling_speech_tokenizer import EMOVASpeechTokenizer
def resize_vocab(model, config):
print(f"Resizing token embeddings to {config.model.mmada.new_vocab_size}")
model.resize_token_embeddings(config.model.mmada.new_vocab_size)
def get_vq_model_class(model_type):
if model_type == "magvitv2":
return MAGVITv2
elif model_type == "emova":
return EMOVASpeechTokenizer.from_pretrained(
"Emova-ollm/emova_speech_tokenizer_hf"
)
else:
raise ValueError(f"model_type {model_type} not supported.")
if __name__ == '__main__':
config = get_config()
resume_wandb_run = config.wandb.resume
run_id = config.wandb.get("run_id", None)
if run_id is None:
resume_wandb_run = False
run_id = wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb.init(
project="demo",
name=config.experiment.name + '_stt',
config=wandb_config,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
text_tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left")
uni_prompting = UniversalPrompting(text_tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=("<|s2t|>", "<|soa|>", "<|eoa|>", "<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
vq_model = get_vq_model_class(config.model.speech_model.type)
vq_model = vq_model.from_pretrained(config.model.speech_model.speech_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()
quantizer = vq_model.encoder.quantizer
if hasattr(quantizer, 'codebook_size'):
print("Codebook size:", quantizer.codebook_size)
# 2) codebook ์๋ฒ ๋ฉ ๋งคํธ๋ฆญ์ค๋ก๋ถํฐ shape ์ถ์ถ
elif hasattr(quantizer, 'codebook'):
cb = quantizer.codebook # nn.Embedding ํํ์ผ ๊ฐ๋ฅ์ฑ
print("Codebook size:", cb.weight.shape[0])
# 3) FSQ์ธ ๊ฒฝ์ฐ levels ๋ก ์์ํ ๋จ๊ณ ์ ํ์ธ
elif hasattr(quantizer, 'levels'):
levels = quantizer.levels
print("Quantization levels per group:", levels)
print("Total scalar bins:", sum(levels))
else:
raise RuntimeError("Quantizer์ codebook ์ ๋ณด๊ฐ ์์ต๋๋ค.")
sys.exit()
# model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
# c) Load main MMaDA model
# train_step = config.model.mmada.train_step
trained_checkpoint_path = f"/home/work/AIDAS/omada-training-stage1/checkpoint-10000/unwrapped_model/"
print(f"Loading trained model from: {trained_checkpoint_path}")
model = MMadaModelLM.from_pretrained(
trained_checkpoint_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
config='/home/work/AIDAS/ommda-training-s2t-mmada/config.json'
)
print("โ
Trained model loaded successfully!")
# model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
# # d) Extend vocabulary for speech tokens
num_speech_tokens = 4096
image_vocab_size = config.model.mmada.codebook_size # 8192
text_vocab_size = len(uni_prompting.text_tokenizer)
# resize_vocab(model, config)
model.to(device)
mask_token_id = model.config.mask_token_id
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = 1 # retain only the top_k most likely tokens, clamp others to have 0 probability
audio_file_list = os.listdir(config.audio_dir)
audio_file_list = [f for f in audio_file_list if f.lower().endswith(('.wav', '.flac', '.mp3'))]
results_table = wandb.Table(columns=["Audio File", "Response"])
for file_name in tqdm(audio_file_list, desc="Processing Audio"):
audio_path = os.path.join(config.audio_dir, file_name)
with torch.no_grad():
speech_token_ids = vq_model.encode(audio_path).to(device)
print(speech_token_ids)
speech_token_ids += text_vocab_size + image_vocab_size
input_ids = text_tokenizer(
['<|start_header_id|>user<|end_header_id|>\n' + config.question +'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'],
return_tensors="pt"
).input_ids.to(device)
input_ids = torch.cat([
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|s2t|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soa|>']).to(device),
speech_token_ids,
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoa|>']).to(device),
# (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
# input_ids
], dim=1).long()
output_ids = model.mmu_generate(input_ids, max_new_tokens=512, steps=512, block_length=512)
# print(output_ids[:, input_ids.shape[1]:])
text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
print(f"\nFile: {file_name}\nResponse: {text}")
results_table.add_data(file_name, text)
wandb.log({"Speech-to-Text Response": results_table}) |