File size: 6,865 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding=utf-8
# Copyright 2025 AIDAS Lab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch.nn.functional as F

import torch
import wandb
from models import MMadaModelLM
from models.modeling_emova_speech_tokenizer import EMOVASpeechTokenizer
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf
from transformers import AutoTokenizer
import argparse

# from models.modeling_speech_tokenizer import EMOVASpeechTokenizer

def resize_vocab(model, config):
    print(f"Resizing token embeddings to {config.model.mmada.new_vocab_size}")
    model.resize_token_embeddings(config.model.mmada.new_vocab_size)

def get_vq_model_class(model_type):
    if model_type == "magvitv2":
        return MAGVITv2
    elif model_type == "emova":
        return EMOVASpeechTokenizer.from_pretrained(
                                                    "Emova-ollm/emova_speech_tokenizer_hf"
                                                    )
    else:
        raise ValueError(f"model_type {model_type} not supported.")

if __name__ == '__main__':

    config = get_config() 
    resume_wandb_run = config.wandb.resume
    run_id = config.wandb.get("run_id", None)
    if run_id is None:
        resume_wandb_run = False
        run_id = wandb.util.generate_id()
        config.wandb.run_id = run_id

    wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}

    wandb.init(
        project="demo",
        name=config.experiment.name + '_stt',
        config=wandb_config,
    )

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    text_tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left")
    
    uni_prompting = UniversalPrompting(text_tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
                                       special_tokens=("<|s2t|>", "<|soa|>", "<|eoa|>", "<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
                                       ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
    
    vq_model = get_vq_model_class(config.model.speech_model.type)
    vq_model = vq_model.from_pretrained(config.model.speech_model.speech_model_name).to(device)
    vq_model.requires_grad_(False)
    vq_model.eval()

    quantizer = vq_model.encoder.quantizer

    if hasattr(quantizer, 'codebook_size'):
        print("Codebook size:", quantizer.codebook_size)

    # 2) codebook ์ž„๋ฒ ๋”ฉ ๋งคํŠธ๋ฆญ์Šค๋กœ๋ถ€ํ„ฐ shape ์ถ”์ถœ
    elif hasattr(quantizer, 'codebook'):
        cb = quantizer.codebook  # nn.Embedding ํ˜•ํƒœ์ผ ๊ฐ€๋Šฅ์„ฑ
        print("Codebook size:", cb.weight.shape[0])

    # 3) FSQ์ธ ๊ฒฝ์šฐ levels ๋กœ ์–‘์žํ™” ๋‹จ๊ณ„ ์ˆ˜ ํ™•์ธ
    elif hasattr(quantizer, 'levels'):
        levels = quantizer.levels
        print("Quantization levels per group:", levels)
        print("Total scalar bins:", sum(levels))
    else:
        raise RuntimeError("Quantizer์— codebook ์ •๋ณด๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")

    sys.exit()
    # model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)

    # c) Load main MMaDA model
    # train_step = config.model.mmada.train_step
    trained_checkpoint_path = f"/home/work/AIDAS/omada-training-stage1/checkpoint-10000/unwrapped_model/"

    print(f"Loading trained model from: {trained_checkpoint_path}")
    model = MMadaModelLM.from_pretrained(
        trained_checkpoint_path, 
        trust_remote_code=True, 
        torch_dtype=torch.bfloat16,
        config='/home/work/AIDAS/ommda-training-s2t-mmada/config.json'
    )
    print("โœ… Trained model loaded successfully!")

    # model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
    
    # # d) Extend vocabulary for speech tokens
    num_speech_tokens = 4096
    image_vocab_size = config.model.mmada.codebook_size # 8192
    text_vocab_size = len(uni_prompting.text_tokenizer)

    # resize_vocab(model, config)

    model.to(device)
    mask_token_id = model.config.mask_token_id

    temperature = 0.8  # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
    top_k = 1  # retain only the top_k most likely tokens, clamp others to have 0 probability
    audio_file_list = os.listdir(config.audio_dir)
    audio_file_list = [f for f in audio_file_list if f.lower().endswith(('.wav', '.flac', '.mp3'))]
    results_table = wandb.Table(columns=["Audio File", "Response"])

    for file_name in tqdm(audio_file_list, desc="Processing Audio"):
        audio_path = os.path.join(config.audio_dir, file_name)
        with torch.no_grad():

            speech_token_ids = vq_model.encode(audio_path).to(device)
            print(speech_token_ids)
            speech_token_ids += text_vocab_size + image_vocab_size

            input_ids = text_tokenizer(
                ['<|start_header_id|>user<|end_header_id|>\n' + config.question +'<eot_id><|start_header_id|>assistant<|end_header_id|>\n'],
                return_tensors="pt"
            ).input_ids.to(device)

            input_ids = torch.cat([
                (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|s2t|>']).to(device),
                (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soa|>']).to(device),
                speech_token_ids,
                (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoa|>']).to(device),
                # (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
                # input_ids
            ], dim=1).long()

            output_ids = model.mmu_generate(input_ids, max_new_tokens=512, steps=512, block_length=512)

            # print(output_ids[:, input_ids.shape[1]:])

            text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
            print(f"\nFile: {file_name}\nResponse: {text}")
            results_table.add_data(file_name, text)

    wandb.log({"Speech-to-Text Response": results_table})