File size: 6,591 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# coding=utf-8
# Copyright 2025 MMaDA Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import inspect
import sys

os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
import wandb
from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig
from training.prompting_utils import UniversalPrompting
from training.utils import get_config, flatten_omega_conf, image_transform
from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch.nn.functional as F

import argparse
from datasets import load_dataset

def resize_vocab(model, config):
    print(f"Resizing token embeddings to {config.new_vocab_size}")
    model.resize_token_embeddings(config.new_vocab_size)


def get_vq_model_class(model_type):
    if model_type == "magvitv2":
        return MAGVITv2
    else:
        raise ValueError(f"model_type {model_type} not supported.")

if __name__ == '__main__':

    config = get_config()


    resume_wandb_run = config.wandb.resume
    run_id = config.wandb.get("run_id", None)
    if run_id is None:
        resume_wandb_run = False
        run_id = wandb.util.generate_id()
        config.wandb.run_id = run_id

    wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}

    wandb.init(
        project="inference",
        name=config.experiment.name + '_i2i',
        config=wandb_config,
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.pretrained_model_path, padding_side="left")

    uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)

    vq_model = get_vq_model_class(config.model.vq_model.type)
    vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
    vq_model.requires_grad_(False)
    vq_model.eval()

    model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)


    model.to(device)

    mask_token_id = model.config.mask_token_id

    # image_preprocessor = image_transform(resolution=config.dataset.params.resolution, is_train=False)

    # print(f"Loading dataset directly from: {config.hf_data_dir}")

    dataset = load_dataset("timbrooks/instructpix2pix-clip-filtered", split="train")
    
    # dataset = dataset.select(range(config.num_samples))

    print(f"Processing {len(dataset)} samples.")

    # config.training.batch_size = config.batch_size
    config.training.batch_size = 1
    config.training.guidance_scale = config.guidance_scale
    config.training.generation_timesteps = config.generation_timesteps

    with open(config.dataset.params.validation_prompts_file, "r") as f:
        validation_prompts = f.read().splitlines()

    for step, sample in enumerate(tqdm(dataset)):
        
        input_image = sample['original_image'].convert("RGB")
        prompts = [sample['edit_prompt']]

        image = image_transform(input_image,resolution=config.dataset.params.resolution).unsqueeze(0).to(device)

        input_image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer)
        
        output_image_placeholder = torch.ones((len(prompts), config.model.mmada.num_vq_tokens),
                                    dtype=torch.long, device=device) * mask_token_id

        input_ids, attention_mask = uni_prompting(
            (prompts, input_image_tokens, output_image_placeholder), 'i2i_gen'
        )

        if config.training.guidance_scale > 0:
            uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(prompts), input_image_tokens,
                                                                     output_image_placeholder), 'i2i_gen')
        else:
            uncond_input_ids = None
            uncond_attention_mask = None

        if config.get("mask_schedule", None) is not None:
            schedule = config.mask_schedule.schedule
            args = config.mask_schedule.get("params", {})
            mask_schedule = get_mask_schedule(schedule, **args)
        else:
            mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine"))
            
        with torch.no_grad():
            gen_token_ids = model.i2i_generate(
                input_ids=input_ids,
                uncond_input_ids=uncond_input_ids,
                attention_mask=attention_mask,
                uncond_attention_mask=uncond_attention_mask,
                guidance_scale=config.training.guidance_scale,
                temperature=config.training.get("generation_temperature", 1.0),
                timesteps=config.training.generation_timesteps,
                noise_schedule=mask_schedule,
                noise_type=config.training.get("noise_type", "mask"),
                seq_len=config.model.mmada.num_vq_tokens,
                uni_prompting=uni_prompting,
                config=config,
            )

        gen_token_ids = torch.clamp(gen_token_ids, max=config.model.mmada.codebook_size - 1, min=0)
        
        images = vq_model.decode_code(gen_token_ids)

        images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
        images *= 255.0
        images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
        pil_images = [Image.fromarray(image) for image in images]

        wandb_images = []
        pil_images = [Image.fromarray(image) for image in images]

        generated_image = pil_images[0]
        original_image = input_image

        caption = f"Prompt: {prompts}"
        wandb.log({
            "Image-to-Image Results": [
                wandb.Image(original_image, caption=f"Original (Step {step})"),
                wandb.Image(generated_image, caption=f"Edited - {caption} (Step {step})")
            ]
        }, step=step)