File size: 7,556 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import argparse
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from typing import List

import numpy as np
import cv2
import torch
from PIL import Image
from torch.utils.data import DataLoader
import wandb

from omegaconf import OmegaConf

from training.utils import image_transform
from inference.common import (
    load_train_config,
    get_vq_model_image,
    build_uni_prompting,
    load_omada_from_checkpoint,
    list_checkpoints,
    grid_dict,
    init_wandb,
    safe_log_table,
)


def sample_video_tokens(video_path: str, vq_model_image, uni_prompting, cfg, device) -> torch.Tensor:
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    if total_frames <= 0:
        cap.release()
        raise RuntimeError(f"No frames in {video_path}")
    indices = np.linspace(0, total_frames - 1, 8, dtype=int)
    frames = []
    for i in range(total_frames):
        ret, frame = cap.read()
        if i in indices:
            if not ret:
                continue
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            pil_img = Image.fromarray(frame)
            frames.append(image_transform(pil_img, resolution=cfg.dataset.preprocessing.resolution))
    cap.release()
    if len(frames) < 8:
        raise RuntimeError(f"Insufficient frames from {video_path}")
    video_tensor = torch.stack(frames).to(device)
    # offset by text tokenizer length as in training evaluation
    video_tokens = vq_model_image.get_code(video_tensor) + len(uni_prompting.text_tokenizer)
    video_tokens = video_tokens.view(1, -1)
    return video_tokens


def build_input_ids(video_tokens: torch.Tensor, question: str, uni_prompting, device) -> torch.Tensor:
    spt = uni_prompting.sptids_dict
    prompt_text = f'<|start_header_id|>user<|end_header_id|>\n{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n'
    prompt_tensor = uni_prompting.text_tokenizer(prompt_text, return_tensors="pt").input_ids.to(device)
    input_ids = torch.cat([
        spt['<|v2t|>'].to(device).unsqueeze(0),
        spt['<|soi|>'].to(device).unsqueeze(0),
        video_tokens,
        spt['<|eoi|>'].to(device).unsqueeze(0),
        spt['<|sot|>'].to(device).unsqueeze(0),
        prompt_tensor
    ], dim=1).long()
    return input_ids


def run_once(ckpt_path: str, hparams: dict, train_cfg, device):
    uni_prompting, tokenizer = build_uni_prompting(train_cfg)
    vq_img = get_vq_model_image(train_cfg, device)
    model = load_omada_from_checkpoint(ckpt_path, device)

    video_dir = hparams.get("video_dir", "/home/work/AIDAS/video/demo")
    questions = hparams.get("questions", ["Please provide a detailed description of the video."])
    steps = int(hparams.get("steps", 256))
    block_length = int(hparams.get("block_length", 128))
    max_new_tokens = int(hparams.get("max_new_tokens", 256))

    # W&B
    init_wandb(hparams.get("_infer_cfg", {}), "v2t", ckpt_path, {
        "steps": steps,
        "block_length": block_length,
        "max_new_tokens": max_new_tokens,
    })

    files = [f for f in os.listdir(video_dir) if f.lower().endswith(".mp4")]
    files.sort()
    rows = []
    for fname in files:
        vpath = os.path.join(video_dir, fname)
        try:
            vtoks = sample_video_tokens(vpath, vq_img, uni_prompting, train_cfg, device)
        except Exception:
            continue
        for q in questions:
            inp = build_input_ids(vtoks, q, uni_prompting, device)
            with torch.no_grad():
                out_ids = model.mmu_generate(
                    inp,
                    max_new_tokens=max_new_tokens,
                    steps=steps,
                    block_length=block_length,
                )
            text = uni_prompting.text_tokenizer.batch_decode(
                out_ids[:, inp.shape[1]:], skip_special_tokens=True
            )[0]
            rows.append([fname, q, text])

    safe_log_table("samples/v2t", ["Video", "Question", "Caption"], rows)
    wandb.finish()


def main():
    parser = argparse.ArgumentParser(description="V2T Inference with CLI overrides or config grids")
    parser.add_argument("--train_config", required=True)
    parser.add_argument("--ckpt_root", required=True)
    parser.add_argument("--infer_config", required=False)
    parser.add_argument("--checkpoint", action="append", help="Repeatable: explicit checkpoint path(s). Can be '.../unwrapped_model', '.../checkpoint-XXXX', or experiment dir")

    # Generation overrides
    parser.add_argument("--steps", type=int)
    parser.add_argument("--block_length", type=int)
    parser.add_argument("--max_new_tokens", type=int)

    # Dataset overrides
    parser.add_argument("--video_dir")
    parser.add_argument("--question", action="append", help="Repeatable: --question 'text' --question 'another'")

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    train_cfg = load_train_config(args.train_config)

    infer_cfg = {}
    if args.infer_config:
        infer_cfg = OmegaConf.to_container(OmegaConf.load(args.infer_config), resolve=True)

    if args.checkpoint:
        ckpt_list = []
        for p in args.checkpoint:
            ckpt_list.extend(list_checkpoints(p))
    else:
        ckpts = infer_cfg.get("checkpoints") if infer_cfg else None
        if ckpts:
            ckpt_list = []
            for p in ckpts:
                ckpt_list.extend(list_checkpoints(p))
        else:
            ckpt_list = list_checkpoints(args.ckpt_root)
    if not ckpt_list:
        raise FileNotFoundError(f"No checkpoints found under {args.ckpt_root} or in infer config.")

    override_present = any([
        args.steps is not None, args.block_length is not None, args.max_new_tokens is not None,
        args.video_dir is not None, args.question is not None,
    ])

    if override_present or not infer_cfg:
        single = {
            "steps": args.steps if args.steps is not None else 256,
            "block_length": args.block_length if args.block_length is not None else 128,
            "max_new_tokens": args.max_new_tokens if args.max_new_tokens is not None else 256,
            "video_dir": args.video_dir or "/home/work/AIDAS/video/demo",
            "questions": args.question or ["Please provide a detailed description of the video."],
        }
        single["_infer_cfg"] = infer_cfg
        combos = [single]
    else:
        gen_grid = infer_cfg.get("generation", {
            "steps": [256],
            "block_length": [128],
            "max_new_tokens": [256],
        })
        combos = grid_dict(gen_grid)
        dcfg = infer_cfg.get("dataset", {
            "video_dir": "/home/work/AIDAS/video/demo",
            "questions": ["Please provide a detailed description of the video."],
        })
        if args.video_dir is not None:
            dcfg["video_dir"] = args.video_dir
        if args.question is not None:
            dcfg["questions"] = args.question
        for c in combos:
            if args.steps is not None:
                c["steps"] = args.steps
            if args.block_length is not None:
                c["block_length"] = args.block_length
            if args.max_new_tokens is not None:
                c["max_new_tokens"] = args.max_new_tokens
            c.update(dcfg)
            c["_infer_cfg"] = infer_cfg

    for ckpt in ckpt_list:
        for hp in combos:
            run_once(ckpt, hp, train_cfg, device)


if __name__ == "__main__":
    main()