Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,588 Bytes
7bfbdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import os
import argparse
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from typing import Callable, List
import re
import torch
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
import wandb
from omegaconf import OmegaConf
from transformers import pipeline
from training.data import T2S_INSTRUCTION
from inference.common import (
load_train_config,
get_vq_model_audio,
build_uni_prompting,
load_omada_from_checkpoint,
list_checkpoints,
grid_dict,
init_wandb,
safe_log_table,
)
from models import get_mask_schedule
_ANGLE_TOKEN_RE = re.compile(r"<[^>]+>")
_EXCLAMATIONPOINT_RE = re.compile(r"exclamationpoint", flags=re.IGNORECASE)
_PUNCT_RE = re.compile(r"[^\w\s']")
def _strip_custom_markers(text: str) -> str:
had_exclamationpoint = bool(_EXCLAMATIONPOINT_RE.search(text))
text = _ANGLE_TOKEN_RE.sub(" ", text)
if had_exclamationpoint:
text = _EXCLAMATIONPOINT_RE.sub(" ", text)
if had_exclamationpoint:
text = text.replace(".", "")
text = _PUNCT_RE.sub(" ", text)
text = re.sub(r"\s+", " ", text).strip()
return text
class T2SEvalDataset(Dataset):
def __init__(self, hf_dataset):
self.hf_dataset = hf_dataset
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
ex = self.hf_dataset[idx]
return {"gt_text": ex["text"], "sample_id": ex["id"]}
def ensure_dir(path: str):
os.makedirs(path, exist_ok=True)
def _basic_normalize(text: str) -> str:
text = _strip_custom_markers(text)
text = text.lower()
return text
def build_normalize_fn(mode: str) -> Callable[[str], str]:
mode = (mode or "basic").strip().lower()
if mode in {"off", "none", "no"}:
return lambda s: s
if mode in {"english", "whisper", "whisper_en"}:
try:
from normalizer.normalizer import EnglishTextNormalizer
n = EnglishTextNormalizer()
def _fn(s: str) -> str:
return re.sub(r"\s+", " ", n(s)).strip()
return _fn
except Exception:
return _basic_normalize
return _basic_normalize
def calculate_wer(predictions: List[str], references: List[str], normalize: Callable[[str], str] = _basic_normalize):
import editdistance
# Normalize texts before WER
predictions = [normalize(p) for p in predictions]
references = [normalize(r) for r in references]
total_errors = 0
total_words = 0
for pred, ref in zip(predictions, references):
pw = pred.split()
rw = ref.split()
total_errors += editdistance.eval(pw, rw)
total_words += len(rw)
wer = total_errors / total_words if total_words > 0 else 0.0
return wer, total_errors, total_words
def run_once(ckpt_path: str, hparams: dict, train_cfg, device):
uni_prompting, tokenizer = build_uni_prompting(train_cfg)
vq_audio = get_vq_model_audio(train_cfg, device)
model = load_omada_from_checkpoint(ckpt_path, device)
# Dataset
dcfg = hparams.get("dataset", {})
subset = dcfg.get("subset", "clean")
split = dcfg.get("split", "test")
limit = int(dcfg.get("limit", 32))
ds_raw = load_dataset("librispeech_asr", subset, split=split)
if limit > 0:
ds_raw = ds_raw.select(range(min(limit, len(ds_raw))))
ds = T2SEvalDataset(ds_raw)
batch_size = int(hparams.get("batch_size", train_cfg.training.batch_size_t2s))
loader = DataLoader(ds, batch_size=batch_size, shuffle=False)
# Generation params
mode = str(hparams.get("mode", "fixed")).lower() # 'fixed', 'free', or 'mmu'
guidance_scale = float(hparams.get("guidance_scale", train_cfg.training.guidance_scale))
temperature = float(hparams.get("temperature", 1.0))
timesteps = int(hparams.get("timesteps", 24 if mode != "mmu" else 256))
default_seq = 254 if mode == "fixed" else (511 if mode == "mmu" else 255)
seq_len = int(hparams.get("seq_len", default_seq))
block_length = int(hparams.get("block_length", 128))
max_new_tokens = int(hparams.get("max_new_tokens", seq_len)) if seq_len > 0 else int(hparams.get("max_new_tokens", 512))
audio_codebook_size = int(hparams.get("audio_codebook_size", 4096))
noise_schedule = hparams.get("noise_schedule", train_cfg.training.get("mask_schedule", "cosine"))
# Convert string name to callable schedule function expected by model
noise_schedule_fn = get_mask_schedule(noise_schedule) if isinstance(noise_schedule, str) else noise_schedule
noise_type = hparams.get("noise_type", "mask")
out_root = hparams.get("output_dir", os.path.join("outputs", "t2s"))
ensure_dir(out_root)
# W&B
init_wandb(hparams.get("_infer_cfg", {}), "t2s", ckpt_path, {
"mode": mode,
"guidance_scale": guidance_scale,
"temperature": temperature,
"timesteps": timesteps,
"seq_len": seq_len,
"batch_size": batch_size,
})
mask_token_id = model.config.mask_token_id
rows = []
for batch in loader:
gt_texts: List[str] = batch["gt_text"]
clean_gt_texts = [_strip_custom_markers(text) for text in gt_texts]
sample_ids: List[str] = batch["sample_id"]
# Build chat prompts
prompts = [
f"<|start_header_id|>user<|end_header_id|>\n{T2S_INSTRUCTION[0]}\n{text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
for text in clean_gt_texts
]
bsz = len(prompts)
audio_tokens = torch.ones((bsz, seq_len), dtype=torch.long, device=device) * mask_token_id
if mode == "fixed":
input_ids, attention_mask = uni_prompting((prompts, audio_tokens), 't2s_fixed_gen')
else:
input_ids, attention_mask = uni_prompting((prompts, audio_tokens), 't2s_gen')
if guidance_scale and guidance_scale > 0 and mode != "mmu":
if mode == "fixed":
uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * bsz, audio_tokens), 't2s_fixed_gen')
else:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * bsz, audio_tokens), 't2s_gen')
else:
uncond_input_ids, uncond_attention_mask = None, None
with torch.no_grad():
if mode == "fixed":
outputs = model.t2s_fixed_generate(
input_ids=input_ids.to(device),
uncond_input_ids=None if uncond_input_ids is None else uncond_input_ids.to(device),
attention_mask=attention_mask.to(device),
uncond_attention_mask=None if uncond_attention_mask is None else uncond_attention_mask.to(device),
guidance_scale=guidance_scale,
temperature=temperature,
timesteps=timesteps,
noise_schedule=noise_schedule_fn,
noise_type=noise_type,
seq_len=seq_len,
uni_prompting=uni_prompting,
config=train_cfg,
)
elif mode == "mmu":
outputs = model.t2s_generate_mmu_like(
input_ids=input_ids.to(device),
max_new_tokens=max_new_tokens,
steps=timesteps,
block_length=block_length,
temperature=temperature,
cfg_scale=guidance_scale,
mask_token_id=mask_token_id,
attention_mask=attention_mask.to(device),
uni_prompting=uni_prompting,
codebook_size=train_cfg.model.omada.codebook_size,
audio_codebook_size=audio_codebook_size,
)
else:
outputs = model.t2s_generate(
input_ids=input_ids.to(device),
uncond_input_ids=None if uncond_input_ids is None else uncond_input_ids.to(device),
attention_mask=attention_mask.to(device),
uncond_attention_mask=None if uncond_attention_mask is None else uncond_attention_mask.to(device),
guidance_scale=guidance_scale,
temperature=temperature,
timesteps=timesteps,
noise_schedule=noise_schedule_fn,
noise_type=noise_type,
seq_len=seq_len,
uni_prompting=uni_prompting,
config=train_cfg,
)
# Decode each sample
for i in range(bsz):
if mode == "mmu":
gen_tokens = outputs[i]
if isinstance(gen_tokens, torch.Tensor):
rel_ids = gen_tokens.detach().cpu().tolist()
else:
rel_ids = list(gen_tokens)
else:
rel_ids = outputs[i].tolist()
if not rel_ids:
continue
unit_str = " ".join(map(str, rel_ids))
speech_unit = "".join([f"<|speech_{u}|>" for u in unit_str.split(" ")])
wav_name = f"{os.path.basename(os.path.dirname(ckpt_path))}_{sample_ids[i]}_{mode}.wav"
wav_path = os.path.join(out_root, wav_name)
_ = vq_audio.decode(speech_unit, condition='gender-female_emotion-neutral_speed-normal_pitch-normal', output_wav_file=wav_path)
rows.append([sample_ids[i], clean_gt_texts[i], wav_path])
# Log audio samples
aud_rows = []
for sid, gt, wav in rows[:64]:
aud_rows.append([sid, gt, wandb.Audio(wav, caption=gt)])
safe_log_table("samples/t2s", ["ID", "GT", "Audio"], aud_rows)
# Optional WER evaluation via Whisper (or any ASR pipeline)
asr_model = hparams.get("wer_asr_model")
if asr_model:
try:
lang_in = hparams.get("wer_language", "english")
# Normalize language to avoid locale strings like C.UTF-8
def _norm_lang(x: str) -> str:
if not isinstance(x, str) or not x:
return "english"
x = x.strip().lower()
if "utf" in x or x.startswith("c.") or x == "c":
return "english"
aliases = {
"en": "english", "eng": "english", "english": "english",
"ko": "korean", "kor": "korean", "korean": "korean",
"zh": "chinese", "cmn": "chinese", "chinese": "chinese",
"ja": "japanese", "jpn": "japanese", "japanese": "japanese",
}
return aliases.get(x, "english")
lang = _norm_lang(lang_in)
max_samples = int(hparams.get("wer_max_samples", 1024))
use_cuda = torch.cuda.is_available()
asr_pipe = pipeline("automatic-speech-recognition", model=asr_model, device=0 if use_cuda else -1)
preds, refs = [], []
norm_mode = str(hparams.get("text_norm", "basic"))
normalize_fn = build_normalize_fn(norm_mode)
trans_rows = []
for i, (sid, gt, wav) in enumerate(rows):
if i >= max_samples:
break
try:
out = asr_pipe(wav, generate_kwargs={"language": lang, "task": "transcribe"})
text = out.get("text", "")
except Exception:
text = ""
base_pred = _strip_custom_markers(text)
base_ref = _strip_custom_markers(gt)
preds.append(base_pred)
refs.append(base_ref)
if i < 32:
trans_rows.append([sid, base_ref, base_pred, wandb.Audio(wav, caption=base_pred)])
# Compute WER using normalized text
wer, errors, words = calculate_wer(preds, refs, normalize=normalize_fn)
wandb.log({
"metrics/t2s_wer": wer,
"metrics/t2s_word_errors": errors,
"metrics/t2s_total_words": words,
})
safe_log_table("samples/t2s_transcriptions", ["ID", "GT", "ASR", "Audio"], trans_rows)
except Exception as e:
wandb.log({"warn/t2s_wer_error": str(e)})
wandb.finish()
def main():
parser = argparse.ArgumentParser(description="T2S Inference (fixed/free) with CLI overrides or config grids")
# Required basics
parser.add_argument("--train_config", required=True)
parser.add_argument("--ckpt_root", required=True, help="Experiment output dir or specific checkpoint path")
parser.add_argument("--infer_config", required=False, help="Optional YAML with wandb and/or grid configs")
parser.add_argument("--checkpoint", action="append", help="Repeatable: explicit checkpoint path(s). Can be '.../unwrapped_model', '.../checkpoint-XXXX', or experiment dir")
# Optional generation overrides (single run when provided)
parser.add_argument("--mode", choices=["fixed", "free", "mmu"], help="T2S mode: fixed, free, or mmu")
parser.add_argument("--guidance_scale", type=float)
parser.add_argument("--temperature", type=float)
parser.add_argument("--timesteps", type=int)
parser.add_argument("--seq_len", type=int)
parser.add_argument("--block_length", type=int)
parser.add_argument("--max_new_tokens", type=int)
parser.add_argument("--noise_schedule")
parser.add_argument("--noise_type")
parser.add_argument("--batch_size", type=int)
parser.add_argument("--output_dir")
parser.add_argument("--text_norm", choices=["off", "basic", "english", "whisper", "whisper_en"], help="Text normalization for WER")
# Optional dataset overrides
parser.add_argument("--subset")
parser.add_argument("--split")
parser.add_argument("--limit", type=int)
# Optional WER logging via ASR
parser.add_argument("--wer_asr_model", help="HF model id for ASR, e.g., openai/whisper-large-v3")
parser.add_argument("--wer_language", help="Language hint for ASR generation")
parser.add_argument("--wer_max_samples", type=int, help="Max number of samples for WER computation")
parser.add_argument("--audio_codebook_size", type=int, help="Override audio codebook size for MMU mode")
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_cfg = load_train_config(args.train_config)
infer_cfg = {}
if args.infer_config:
infer_cfg = OmegaConf.to_container(OmegaConf.load(args.infer_config), resolve=True)
# Checkpoints
# Build checkpoint list by priority: explicit --checkpoint > infer_config.checkpoints > --ckpt_root
if args.checkpoint:
ckpt_list = []
for p in args.checkpoint:
ckpt_list.extend(list_checkpoints(p))
else:
ckpts = infer_cfg.get("checkpoints") if infer_cfg else None
if ckpts:
ckpt_list = []
for p in ckpts:
ckpt_list.extend(list_checkpoints(p))
else:
ckpt_list = list_checkpoints(args.ckpt_root)
if not ckpt_list:
raise FileNotFoundError(f"No checkpoints found under {args.ckpt_root} or in infer config.")
# Decide between single-run overrides or grid from config
override_present = any([
args.mode is not None, args.guidance_scale is not None, args.temperature is not None,
args.timesteps is not None, args.seq_len is not None, args.noise_schedule is not None,
args.noise_type is not None, args.batch_size is not None, args.output_dir is not None,
args.block_length is not None, args.max_new_tokens is not None,
args.text_norm is not None,
args.subset is not None, args.split is not None, args.limit is not None,
])
if override_present or not infer_cfg:
# Build single combination from CLI overrides with fallbacks
single = {
"mode": args.mode or "fixed",
"guidance_scale": args.guidance_scale if args.guidance_scale is not None else float(train_cfg.training.guidance_scale),
"temperature": args.temperature if args.temperature is not None else 1.0,
"timesteps": args.timesteps if args.timesteps is not None else 24,
"seq_len": args.seq_len if args.seq_len is not None else 254,
"batch_size": args.batch_size if args.batch_size is not None else int(train_cfg.training.batch_size_t2s),
"output_dir": args.output_dir or os.path.join("outputs", "t2s"),
"noise_schedule": args.noise_schedule if args.noise_schedule is not None else train_cfg.training.get("mask_schedule", "cosine"),
"noise_type": args.noise_type if args.noise_type is not None else "mask",
}
if args.text_norm is not None:
single["text_norm"] = args.text_norm
if args.block_length is not None:
single["block_length"] = args.block_length
if args.max_new_tokens is not None:
single["max_new_tokens"] = args.max_new_tokens
if args.audio_codebook_size is not None:
single["audio_codebook_size"] = args.audio_codebook_size
# WER options
if args.wer_asr_model is not None:
single["wer_asr_model"] = args.wer_asr_model
if args.wer_language is not None:
single["wer_language"] = args.wer_language
if args.wer_max_samples is not None:
single["wer_max_samples"] = args.wer_max_samples
dcfg = {
"subset": args.subset or "clean",
"split": args.split or "test",
"limit": args.limit if args.limit is not None else 32,
}
single["dataset"] = dcfg
single["_infer_cfg"] = infer_cfg
combos = [single]
else:
# Grid from config, allow CLI overrides to force values across the grid
gen_grid = infer_cfg.get("generation", {
"mode": ["fixed"],
"guidance_scale": [float(train_cfg.training.guidance_scale)],
"temperature": [1.0],
"timesteps": [24],
"seq_len": [254],
"batch_size": [int(train_cfg.training.batch_size_t2s)],
"output_dir": [os.path.join("outputs", "t2s")],
})
combos = grid_dict(gen_grid)
dcfg = infer_cfg.get("dataset", {
"subset": "clean",
"split": "test",
"limit": 32,
})
# Apply dataset overrides if given
if args.subset is not None:
dcfg["subset"] = args.subset
if args.split is not None:
dcfg["split"] = args.split
if args.limit is not None:
dcfg["limit"] = args.limit
# Apply generation overrides across combos if provided
for c in combos:
if args.mode is not None:
c["mode"] = args.mode
if args.guidance_scale is not None:
c["guidance_scale"] = args.guidance_scale
if args.temperature is not None:
c["temperature"] = args.temperature
if args.timesteps is not None:
c["timesteps"] = args.timesteps
if args.seq_len is not None:
c["seq_len"] = args.seq_len
if args.batch_size is not None:
c["batch_size"] = args.batch_size
if args.output_dir is not None:
c["output_dir"] = args.output_dir
if args.noise_schedule is not None:
c["noise_schedule"] = args.noise_schedule
if args.noise_type is not None:
c["noise_type"] = args.noise_type
if args.text_norm is not None:
c["text_norm"] = args.text_norm
if args.block_length is not None:
c["block_length"] = args.block_length
if args.max_new_tokens is not None:
c["max_new_tokens"] = args.max_new_tokens
if args.audio_codebook_size is not None:
c["audio_codebook_size"] = args.audio_codebook_size
if args.wer_asr_model is not None:
c["wer_asr_model"] = args.wer_asr_model
if args.wer_language is not None:
c["wer_language"] = args.wer_language
if args.wer_max_samples is not None:
c["wer_max_samples"] = args.wer_max_samples
c["dataset"] = dcfg
c["_infer_cfg"] = infer_cfg
for ckpt in ckpt_list:
for hp in combos:
run_once(ckpt, hp, train_cfg, device)
if __name__ == "__main__":
main()
|