File size: 13,163 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os
import argparse
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from functools import partial
from typing import Callable, List
import re

import torch
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
import wandb

from omegaconf import OmegaConf

from training.data import S2T_INSTRUCTION
from inference.common import (
    load_train_config,
    get_vq_model_audio,
    build_uni_prompting,
    load_omada_from_checkpoint,
    list_checkpoints,
    grid_dict,
    init_wandb,
    safe_log_table,
)

_ANGLE_TOKEN_RE = re.compile(r"<[^>]+>")
_EXCLAMATIONPOINT_RE = re.compile(r"EXCLAMATIONPOINT", flags=re.IGNORECASE)
_PUNCT_RE = re.compile(r"[^\w\s']")


def _strip_custom_markers(text: str) -> str:
    had_exclamationpoint = bool(_EXCLAMATIONPOINT_RE.search(text))
    text = _ANGLE_TOKEN_RE.sub(" ", text)
    if had_exclamationpoint:
        text = _EXCLAMATIONPOINT_RE.sub(" ", text)
    if had_exclamationpoint:
        text = text.replace(".", "")
    text = _PUNCT_RE.sub(" ", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text


def _basic_normalize(text: str) -> str:
    text = _strip_custom_markers(text)
    text = text.lower()
    text = re.sub(r"[^\w\s']", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text


def build_normalize_fn(mode: str) -> Callable[[str], str]:
    mode = (mode or "basic").strip().lower()
    if mode in {"off", "none", "no"}:
        return lambda s: s
    if mode in {"english", "whisper", "whisper_en"}:
        try:
            from normalizer.normalizer import EnglishTextNormalizer

            n = EnglishTextNormalizer()

            def _fn(s: str) -> str:
                return re.sub(r"\s+", " ", n(s)).strip()

            return _fn
        except Exception:
            # Fallback to basic if normalizer package import fails
            return _basic_normalize
    # default basic
    return _basic_normalize


def calculate_wer(predictions: List[str], references: List[str], normalize: Callable[[str], str] = _basic_normalize):
    import editdistance
    # Normalize texts before WER
    predictions = [normalize(p) for p in predictions]
    references = [normalize(r) for r in references]
    total_errors = 0
    total_words = 0
    for pred, ref in zip(predictions, references):
        pred_words = pred.split()
        ref_words = ref.split()
        total_errors += editdistance.eval(pred_words, ref_words)
        total_words += len(ref_words)
    wer = total_errors / total_words if total_words > 0 else 0.0
    return wer, total_errors, total_words


class S2TEvalDataset(Dataset):
    def __init__(self, hf_dataset, root_path: str):
        self.hf_dataset = hf_dataset
        self.root_path = root_path

    def __len__(self):
        return len(self.hf_dataset)

    def __getitem__(self, idx):
        ex = self.hf_dataset[idx]
        sample_id = ex["id"]
        speaker_id, chapter_id, _ = sample_id.split("-")
        audio_path = os.path.join(self.root_path, speaker_id, chapter_id, f"{sample_id}.flac")
        return {"audio_path": audio_path, "gt_text": ex["text"], "sample_id": sample_id}


def s2t_eval_collate_fn(batch, vq_model_audio, tokenizer, uni_prompting, cfg):
    import random
    audio_tokens_batch = []
    offset = len(uni_prompting.text_tokenizer) + cfg.model.omada.codebook_size
    for item in batch:
        path = item['audio_path']
        tokens = vq_model_audio.encode(path)
        tokens_with_offset = tokens + offset
        audio_tokens_batch.append(tokens_with_offset)

    sptids = uni_prompting.sptids_dict
    device = audio_tokens_batch[0].device
    batched_input_ids = []

    for audio_tokens in audio_tokens_batch:
        task_tensor = sptids['<|s2t|>'].to(device).unsqueeze(0)
        soa_tensor = sptids['<|soa|>'].to(device).unsqueeze(0)
        eoa_tensor = sptids['<|eoa|>'].to(device).unsqueeze(0)
        audio_block = torch.cat([task_tensor, soa_tensor, audio_tokens, eoa_tensor], dim=1)

        prompt_text = random.choice(S2T_INSTRUCTION)
        full_prompt_text = f'<|start_header_id|>user<|end_header_id|>\n{prompt_text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n'
        prompt_tensor = tokenizer(full_prompt_text, return_tensors="pt").input_ids.to(device)

        final_seq = torch.cat([audio_block, prompt_tensor], dim=1)
        batched_input_ids.append(final_seq.squeeze(0))

    max_len = max(seq.size(0) for seq in batched_input_ids)
    pad_token_id = 126093

    final_batch_input_ids = torch.full(
        (len(batched_input_ids), max_len),
        pad_token_id,
        dtype=torch.long,
        device=device,
    )
    for i, seq in enumerate(batched_input_ids):
        final_batch_input_ids[i, -len(seq):] = seq

    return {
        "input_ids": final_batch_input_ids,
        "gt_texts": [item['gt_text'] for item in batch],
        "sample_ids": [item['sample_id'] for item in batch],
    }


def run_once(ckpt_path: str, hparams: dict, train_cfg, device):
    # Models and prompting
    uni_prompting, tokenizer = build_uni_prompting(train_cfg)
    vq_audio = get_vq_model_audio(train_cfg, device)
    model = load_omada_from_checkpoint(ckpt_path, device)

    # Dataset
    dcfg = hparams.get("dataset", {})
    subset = dcfg.get("subset", "clean")
    split = dcfg.get("split", "test")
    limit = int(dcfg.get("limit", 128))
    root_path = dcfg.get("root_path", "/home/work/AIDAS/data/audio/LibriSpeech/test-clean")
    ds_raw = load_dataset("librispeech_asr", subset, split=split)
    if limit > 0:
        ds_raw = ds_raw.select(range(min(limit, len(ds_raw))))
    ds = S2TEvalDataset(ds_raw, root_path=root_path)

    collate = partial(
        s2t_eval_collate_fn,
        vq_model_audio=vq_audio,
        tokenizer=uni_prompting.text_tokenizer,
        uni_prompting=uni_prompting,
        cfg=train_cfg,
    )
    batch_size = int(hparams.get("batch_size", train_cfg.training.batch_size_s2t))
    loader = DataLoader(ds, batch_size=batch_size, shuffle=False, collate_fn=collate)

    # Generation hparams
    steps = int(hparams.get("steps", 128))
    block_length = int(hparams.get("block_length", 64))
    max_new_tokens = int(hparams.get("max_new_tokens", 256))
    remasking = hparams.get("remasking", "low_confidence")

    # W&B
    init_wandb(hparams.get("_infer_cfg", {}), "s2t", ckpt_path, {
        "steps": steps,
        "block_length": block_length,
        "max_new_tokens": max_new_tokens,
        "remasking": remasking,
        "batch_size": batch_size,
    })

    preds, refs, rows = [], [], []
    norm_mode = str(hparams.get("text_norm", "basic"))
    normalize_fn = build_normalize_fn(norm_mode)
    for batch in loader:
        input_ids = batch["input_ids"].to(device)
        gt_texts = batch["gt_texts"]
        sample_ids = batch["sample_ids"]
        with torch.no_grad():
            output_ids = model.mmu_generate(
                input_ids,
                max_new_tokens=max_new_tokens,
                steps=steps,
                block_length=block_length,
                remasking=remasking,
            )
        decoded = uni_prompting.text_tokenizer.batch_decode(
            output_ids[:, input_ids.shape[1]:], skip_special_tokens=True
        )
        # print(decoded)
        clean_gts = [_strip_custom_markers(gt) for gt in gt_texts]
        clean_preds = [_strip_custom_markers(pred) for pred in decoded]
        print(clean_preds)
        for sid, clean_gt, clean_pred in zip(sample_ids, clean_gts, clean_preds):
            refs.append(clean_gt)
            preds.append(clean_pred)
            rows.append([sid, clean_gt, clean_pred])

    wer, errors, words = calculate_wer(preds, refs, normalize=normalize_fn)
    wandb.log({
        "metrics/s2t_wer": wer,
        "metrics/s2t_word_errors": errors,
        "metrics/s2t_total_words": words,
    })
    safe_log_table("samples/s2t", ["ID", "GT", "PRED"], rows[:64])
    wandb.finish()


def main():
    parser = argparse.ArgumentParser(description="S2T Inference with CLI overrides or config grids")
    parser.add_argument("--train_config", required=True, help="Path to training YAML used to build tokenizers and VQ models")
    parser.add_argument("--ckpt_root", required=True, help="Experiment output dir or a specific checkpoint path")
    parser.add_argument("--infer_config", required=False, help="Optional YAML for W&B and grids")
    parser.add_argument("--checkpoint", action="append", help="Repeatable: explicit checkpoint path(s). Can be '.../unwrapped_model', '.../checkpoint-XXXX', or experiment dir")

    # Generation overrides
    parser.add_argument("--steps", type=int)
    parser.add_argument("--block_length", type=int)
    parser.add_argument("--max_new_tokens", type=int)
    parser.add_argument("--remasking")
    parser.add_argument("--batch_size", type=int)
    parser.add_argument("--text_norm", choices=["off", "basic", "english", "whisper", "whisper_en"], help="Text normalization for WER")

    # Dataset overrides
    parser.add_argument("--subset")
    parser.add_argument("--split")
    parser.add_argument("--root_path")
    parser.add_argument("--limit", type=int)

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    train_cfg = load_train_config(args.train_config)

    infer_cfg = {}
    if args.infer_config:
        infer_cfg = OmegaConf.to_container(OmegaConf.load(args.infer_config), resolve=True)

    # Checkpoints
    # Build checkpoint list: --checkpoint > infer_config.checkpoints > --ckpt_root
    if args.checkpoint:
        ckpt_list = []
        for p in args.checkpoint:
            ckpt_list.extend(list_checkpoints(p))
    else:
        ckpts = infer_cfg.get("checkpoints") if infer_cfg else None
        if ckpts:
            ckpt_list = []
            for p in ckpts:
                ckpt_list.extend(list_checkpoints(p))
        else:
            ckpt_list = list_checkpoints(args.ckpt_root)
    if not ckpt_list:
        raise FileNotFoundError(f"No checkpoints found under {args.ckpt_root} or in infer config.")

    override_present = any([
        args.steps is not None, args.block_length is not None, args.max_new_tokens is not None,
        args.remasking is not None, args.batch_size is not None,
        args.text_norm is not None,
        args.subset is not None, args.split is not None, args.root_path is not None, args.limit is not None,
    ])

    if override_present or not infer_cfg:
        single = {
            "steps": args.steps if args.steps is not None else 128,
            "block_length": args.block_length if args.block_length is not None else 64,
            "max_new_tokens": args.max_new_tokens if args.max_new_tokens is not None else 256,
            "remasking": args.remasking if args.remasking is not None else "low_confidence",
            "batch_size": args.batch_size if args.batch_size is not None else int(train_cfg.training.batch_size_s2t),
        }
        if args.text_norm is not None:
            single["text_norm"] = args.text_norm
        dcfg = {
            "subset": args.subset or "clean",
            "split": args.split or "test",
            "root_path": args.root_path or "/home/work/AIDAS/data/audio/LibriSpeech/test-clean",
            "limit": args.limit if args.limit is not None else 128,
        }
        single["dataset"] = dcfg
        single["_infer_cfg"] = infer_cfg
        combos = [single]
    else:
        gen_grid = infer_cfg.get("generation", {
            "steps": [128],
            "block_length": [64],
            "max_new_tokens": [256],
            "remasking": ["low_confidence"],
            "batch_size": [int(train_cfg.training.batch_size_s2t)],
        })
        combos = grid_dict(gen_grid)
        dcfg = infer_cfg.get("dataset", {
            "subset": "clean",
            "split": "test",
            "root_path": "/home/work/AIDAS/data/audio/LibriSpeech/test-clean",
            "limit": 128,
        })
        # Apply overrides if provided
        if args.subset is not None:
            dcfg["subset"] = args.subset
        if args.split is not None:
            dcfg["split"] = args.split
        if args.root_path is not None:
            dcfg["root_path"] = args.root_path
        if args.limit is not None:
            dcfg["limit"] = args.limit
        for c in combos:
            if args.steps is not None:
                c["steps"] = args.steps
            if args.block_length is not None:
                c["block_length"] = args.block_length
            if args.max_new_tokens is not None:
                c["max_new_tokens"] = args.max_new_tokens
            if args.remasking is not None:
                c["remasking"] = args.remasking
            if args.batch_size is not None:
                c["batch_size"] = args.batch_size
            if args.text_norm is not None:
                c["text_norm"] = args.text_norm
            c["dataset"] = dcfg
            c["_infer_cfg"] = infer_cfg

    for ckpt in ckpt_list:
        for hp in combos:
            run_once(ckpt, hp, train_cfg, device)


if __name__ == "__main__":
    main()