Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,163 Bytes
7bfbdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import os
import argparse
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from functools import partial
from typing import Callable, List
import re
import torch
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
import wandb
from omegaconf import OmegaConf
from training.data import S2T_INSTRUCTION
from inference.common import (
load_train_config,
get_vq_model_audio,
build_uni_prompting,
load_omada_from_checkpoint,
list_checkpoints,
grid_dict,
init_wandb,
safe_log_table,
)
_ANGLE_TOKEN_RE = re.compile(r"<[^>]+>")
_EXCLAMATIONPOINT_RE = re.compile(r"EXCLAMATIONPOINT", flags=re.IGNORECASE)
_PUNCT_RE = re.compile(r"[^\w\s']")
def _strip_custom_markers(text: str) -> str:
had_exclamationpoint = bool(_EXCLAMATIONPOINT_RE.search(text))
text = _ANGLE_TOKEN_RE.sub(" ", text)
if had_exclamationpoint:
text = _EXCLAMATIONPOINT_RE.sub(" ", text)
if had_exclamationpoint:
text = text.replace(".", "")
text = _PUNCT_RE.sub(" ", text)
text = re.sub(r"\s+", " ", text).strip()
return text
def _basic_normalize(text: str) -> str:
text = _strip_custom_markers(text)
text = text.lower()
text = re.sub(r"[^\w\s']", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
def build_normalize_fn(mode: str) -> Callable[[str], str]:
mode = (mode or "basic").strip().lower()
if mode in {"off", "none", "no"}:
return lambda s: s
if mode in {"english", "whisper", "whisper_en"}:
try:
from normalizer.normalizer import EnglishTextNormalizer
n = EnglishTextNormalizer()
def _fn(s: str) -> str:
return re.sub(r"\s+", " ", n(s)).strip()
return _fn
except Exception:
# Fallback to basic if normalizer package import fails
return _basic_normalize
# default basic
return _basic_normalize
def calculate_wer(predictions: List[str], references: List[str], normalize: Callable[[str], str] = _basic_normalize):
import editdistance
# Normalize texts before WER
predictions = [normalize(p) for p in predictions]
references = [normalize(r) for r in references]
total_errors = 0
total_words = 0
for pred, ref in zip(predictions, references):
pred_words = pred.split()
ref_words = ref.split()
total_errors += editdistance.eval(pred_words, ref_words)
total_words += len(ref_words)
wer = total_errors / total_words if total_words > 0 else 0.0
return wer, total_errors, total_words
class S2TEvalDataset(Dataset):
def __init__(self, hf_dataset, root_path: str):
self.hf_dataset = hf_dataset
self.root_path = root_path
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
ex = self.hf_dataset[idx]
sample_id = ex["id"]
speaker_id, chapter_id, _ = sample_id.split("-")
audio_path = os.path.join(self.root_path, speaker_id, chapter_id, f"{sample_id}.flac")
return {"audio_path": audio_path, "gt_text": ex["text"], "sample_id": sample_id}
def s2t_eval_collate_fn(batch, vq_model_audio, tokenizer, uni_prompting, cfg):
import random
audio_tokens_batch = []
offset = len(uni_prompting.text_tokenizer) + cfg.model.omada.codebook_size
for item in batch:
path = item['audio_path']
tokens = vq_model_audio.encode(path)
tokens_with_offset = tokens + offset
audio_tokens_batch.append(tokens_with_offset)
sptids = uni_prompting.sptids_dict
device = audio_tokens_batch[0].device
batched_input_ids = []
for audio_tokens in audio_tokens_batch:
task_tensor = sptids['<|s2t|>'].to(device).unsqueeze(0)
soa_tensor = sptids['<|soa|>'].to(device).unsqueeze(0)
eoa_tensor = sptids['<|eoa|>'].to(device).unsqueeze(0)
audio_block = torch.cat([task_tensor, soa_tensor, audio_tokens, eoa_tensor], dim=1)
prompt_text = random.choice(S2T_INSTRUCTION)
full_prompt_text = f'<|start_header_id|>user<|end_header_id|>\n{prompt_text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n'
prompt_tensor = tokenizer(full_prompt_text, return_tensors="pt").input_ids.to(device)
final_seq = torch.cat([audio_block, prompt_tensor], dim=1)
batched_input_ids.append(final_seq.squeeze(0))
max_len = max(seq.size(0) for seq in batched_input_ids)
pad_token_id = 126093
final_batch_input_ids = torch.full(
(len(batched_input_ids), max_len),
pad_token_id,
dtype=torch.long,
device=device,
)
for i, seq in enumerate(batched_input_ids):
final_batch_input_ids[i, -len(seq):] = seq
return {
"input_ids": final_batch_input_ids,
"gt_texts": [item['gt_text'] for item in batch],
"sample_ids": [item['sample_id'] for item in batch],
}
def run_once(ckpt_path: str, hparams: dict, train_cfg, device):
# Models and prompting
uni_prompting, tokenizer = build_uni_prompting(train_cfg)
vq_audio = get_vq_model_audio(train_cfg, device)
model = load_omada_from_checkpoint(ckpt_path, device)
# Dataset
dcfg = hparams.get("dataset", {})
subset = dcfg.get("subset", "clean")
split = dcfg.get("split", "test")
limit = int(dcfg.get("limit", 128))
root_path = dcfg.get("root_path", "/home/work/AIDAS/data/audio/LibriSpeech/test-clean")
ds_raw = load_dataset("librispeech_asr", subset, split=split)
if limit > 0:
ds_raw = ds_raw.select(range(min(limit, len(ds_raw))))
ds = S2TEvalDataset(ds_raw, root_path=root_path)
collate = partial(
s2t_eval_collate_fn,
vq_model_audio=vq_audio,
tokenizer=uni_prompting.text_tokenizer,
uni_prompting=uni_prompting,
cfg=train_cfg,
)
batch_size = int(hparams.get("batch_size", train_cfg.training.batch_size_s2t))
loader = DataLoader(ds, batch_size=batch_size, shuffle=False, collate_fn=collate)
# Generation hparams
steps = int(hparams.get("steps", 128))
block_length = int(hparams.get("block_length", 64))
max_new_tokens = int(hparams.get("max_new_tokens", 256))
remasking = hparams.get("remasking", "low_confidence")
# W&B
init_wandb(hparams.get("_infer_cfg", {}), "s2t", ckpt_path, {
"steps": steps,
"block_length": block_length,
"max_new_tokens": max_new_tokens,
"remasking": remasking,
"batch_size": batch_size,
})
preds, refs, rows = [], [], []
norm_mode = str(hparams.get("text_norm", "basic"))
normalize_fn = build_normalize_fn(norm_mode)
for batch in loader:
input_ids = batch["input_ids"].to(device)
gt_texts = batch["gt_texts"]
sample_ids = batch["sample_ids"]
with torch.no_grad():
output_ids = model.mmu_generate(
input_ids,
max_new_tokens=max_new_tokens,
steps=steps,
block_length=block_length,
remasking=remasking,
)
decoded = uni_prompting.text_tokenizer.batch_decode(
output_ids[:, input_ids.shape[1]:], skip_special_tokens=True
)
# print(decoded)
clean_gts = [_strip_custom_markers(gt) for gt in gt_texts]
clean_preds = [_strip_custom_markers(pred) for pred in decoded]
print(clean_preds)
for sid, clean_gt, clean_pred in zip(sample_ids, clean_gts, clean_preds):
refs.append(clean_gt)
preds.append(clean_pred)
rows.append([sid, clean_gt, clean_pred])
wer, errors, words = calculate_wer(preds, refs, normalize=normalize_fn)
wandb.log({
"metrics/s2t_wer": wer,
"metrics/s2t_word_errors": errors,
"metrics/s2t_total_words": words,
})
safe_log_table("samples/s2t", ["ID", "GT", "PRED"], rows[:64])
wandb.finish()
def main():
parser = argparse.ArgumentParser(description="S2T Inference with CLI overrides or config grids")
parser.add_argument("--train_config", required=True, help="Path to training YAML used to build tokenizers and VQ models")
parser.add_argument("--ckpt_root", required=True, help="Experiment output dir or a specific checkpoint path")
parser.add_argument("--infer_config", required=False, help="Optional YAML for W&B and grids")
parser.add_argument("--checkpoint", action="append", help="Repeatable: explicit checkpoint path(s). Can be '.../unwrapped_model', '.../checkpoint-XXXX', or experiment dir")
# Generation overrides
parser.add_argument("--steps", type=int)
parser.add_argument("--block_length", type=int)
parser.add_argument("--max_new_tokens", type=int)
parser.add_argument("--remasking")
parser.add_argument("--batch_size", type=int)
parser.add_argument("--text_norm", choices=["off", "basic", "english", "whisper", "whisper_en"], help="Text normalization for WER")
# Dataset overrides
parser.add_argument("--subset")
parser.add_argument("--split")
parser.add_argument("--root_path")
parser.add_argument("--limit", type=int)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_cfg = load_train_config(args.train_config)
infer_cfg = {}
if args.infer_config:
infer_cfg = OmegaConf.to_container(OmegaConf.load(args.infer_config), resolve=True)
# Checkpoints
# Build checkpoint list: --checkpoint > infer_config.checkpoints > --ckpt_root
if args.checkpoint:
ckpt_list = []
for p in args.checkpoint:
ckpt_list.extend(list_checkpoints(p))
else:
ckpts = infer_cfg.get("checkpoints") if infer_cfg else None
if ckpts:
ckpt_list = []
for p in ckpts:
ckpt_list.extend(list_checkpoints(p))
else:
ckpt_list = list_checkpoints(args.ckpt_root)
if not ckpt_list:
raise FileNotFoundError(f"No checkpoints found under {args.ckpt_root} or in infer config.")
override_present = any([
args.steps is not None, args.block_length is not None, args.max_new_tokens is not None,
args.remasking is not None, args.batch_size is not None,
args.text_norm is not None,
args.subset is not None, args.split is not None, args.root_path is not None, args.limit is not None,
])
if override_present or not infer_cfg:
single = {
"steps": args.steps if args.steps is not None else 128,
"block_length": args.block_length if args.block_length is not None else 64,
"max_new_tokens": args.max_new_tokens if args.max_new_tokens is not None else 256,
"remasking": args.remasking if args.remasking is not None else "low_confidence",
"batch_size": args.batch_size if args.batch_size is not None else int(train_cfg.training.batch_size_s2t),
}
if args.text_norm is not None:
single["text_norm"] = args.text_norm
dcfg = {
"subset": args.subset or "clean",
"split": args.split or "test",
"root_path": args.root_path or "/home/work/AIDAS/data/audio/LibriSpeech/test-clean",
"limit": args.limit if args.limit is not None else 128,
}
single["dataset"] = dcfg
single["_infer_cfg"] = infer_cfg
combos = [single]
else:
gen_grid = infer_cfg.get("generation", {
"steps": [128],
"block_length": [64],
"max_new_tokens": [256],
"remasking": ["low_confidence"],
"batch_size": [int(train_cfg.training.batch_size_s2t)],
})
combos = grid_dict(gen_grid)
dcfg = infer_cfg.get("dataset", {
"subset": "clean",
"split": "test",
"root_path": "/home/work/AIDAS/data/audio/LibriSpeech/test-clean",
"limit": 128,
})
# Apply overrides if provided
if args.subset is not None:
dcfg["subset"] = args.subset
if args.split is not None:
dcfg["split"] = args.split
if args.root_path is not None:
dcfg["root_path"] = args.root_path
if args.limit is not None:
dcfg["limit"] = args.limit
for c in combos:
if args.steps is not None:
c["steps"] = args.steps
if args.block_length is not None:
c["block_length"] = args.block_length
if args.max_new_tokens is not None:
c["max_new_tokens"] = args.max_new_tokens
if args.remasking is not None:
c["remasking"] = args.remasking
if args.batch_size is not None:
c["batch_size"] = args.batch_size
if args.text_norm is not None:
c["text_norm"] = args.text_norm
c["dataset"] = dcfg
c["_infer_cfg"] = infer_cfg
for ckpt in ckpt_list:
for hp in combos:
run_once(ckpt, hp, train_cfg, device)
if __name__ == "__main__":
main()
|