File size: 7,109 Bytes
7bfbdc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python3
"""Utility to reproduce and debug the speech DataLoader used in training.

This script pulls the speech dataset configuration from the Omada
instruction-tuning config, instantiates the same `MixedSpeechTextDataset`, and
iterates a configurable number of batches while measuring how long each fetch
takes. Use it to spot slow or stuck samples without launching the full training
job.

Typical usage::

    python AIDAS/MMaDA/script/debug_speech_dataloader.py \
        --config AIDAS/MMaDA/configs/omada_instruction_tuning.yaml \
        --flow s2t --max-batches 5 --num-workers 1 --timeout 0

Pass `--inspect-items` for a direct `dataset[idx]` sweep when a specific sample
seems suspicious.
"""

from __future__ import annotations

import argparse
import itertools
import logging
import sys
import time
from pathlib import Path
from typing import Any, Iterable, List

from omegaconf import OmegaConf
from torch.utils.data import DataLoader

from MMaDA.training.data import MixedSpeechTextDataset


def _collate_fn_audio(batch: List[dict[str, Any]]) -> dict[str, List[Any]]:
    """Match the collate function used in training for speech flows."""

    return {
        "audio_path": [item["audio_path"] for item in batch],
        "text": [item["text"] for item in batch],
        "audio_tokens": [item.get("audio_tokens") for item in batch],
    }


def _as_list_of_dicts(cfg_fragment: Any) -> List[dict[str, Any]]:
    container = OmegaConf.to_container(cfg_fragment, resolve=True)
    if not isinstance(container, Iterable):  # pragma: no cover - sanity guard
        raise TypeError("audio_data config must be a list of dataset dicts")
    return list(container)  # type: ignore[arg-type]


def _build_dataset(cfg) -> MixedSpeechTextDataset:
    dataset_cfg = cfg.dataset.params
    audio_data_cfg = _as_list_of_dicts(dataset_cfg.audio_data)
    return MixedSpeechTextDataset(audio_data_cfg)


def _log_batch_summary(idx: int, batch: dict[str, List[Any]], elapsed: float) -> None:
    audio_paths = batch.get("audio_path", [])
    sample = audio_paths[0] if audio_paths else "<empty>"
    logging.info(
        "batch=%d size=%d elapsed=%.2fs sample=%s",
        idx,
        len(audio_paths),
        elapsed,
        sample,
    )


def _inspect_items(dataset: MixedSpeechTextDataset, max_items: int) -> None:
    logging.info("Inspecting individual dataset items (max=%d)", max_items)
    for idx in itertools.islice(range(len(dataset)), max_items):
        tick = time.perf_counter()
        try:
            item = dataset[idx]
        except Exception as exc:  # pragma: no cover - diagnostic path
            logging.error("idx=%d failed: %s", idx, exc)
            continue
        elapsed = time.perf_counter() - tick
        logging.info(
            "idx=%d elapsed=%.2fs path=%s text_len=%d tokens=%s",
            idx,
            elapsed,
            item.get("audio_path"),
            len(item.get("text", "")),
            "cached" if item.get("audio_tokens") is not None else "None",
        )


def parse_args(argv: List[str]) -> argparse.Namespace:
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--config",
        type=Path,
        default=Path("AIDAS/MMaDA/configs/omada_instruction_tuning.yaml"),
        help="Path to the training config YAML",
    )
    parser.add_argument(
        "--flow",
        choices=["s2t", "t2s"],
        default="s2t",
        help="Which speech flow's batch size defaults to use",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=None,
        help="Override batch size (defaults to config.training.batch_size_<flow>)",
    )
    parser.add_argument(
        "--num-workers",
        type=int,
        default=None,
        help="Override DataLoader workers (defaults to config.dataset.params.num_workers)",
    )
    parser.add_argument(
        "--persistent-workers",
        action="store_true",
        help="Enable persistent workers regardless of config",
    )
    parser.add_argument(
        "--timeout",
        type=float,
        default=None,
        help="DataLoader timeout in seconds (defaults to config.dataset.params.dataloader_timeout)",
    )
    parser.add_argument(
        "--max-batches",
        type=int,
        default=10,
        help="Number of batches to iterate (0 means run through the entire dataset)",
    )
    parser.add_argument(
        "--inspect-items",
        type=int,
        default=0,
        help="If >0, bypass the DataLoader and inspect this many individual dataset items first",
    )
    parser.add_argument(
        "--prefetch-factor",
        type=int,
        default=None,
        help="Optional override for DataLoader prefetch_factor",
    )
    parser.add_argument(
        "--log-level",
        default="INFO",
        help="Logging level",
    )
    return parser.parse_args(argv)


def main(argv: List[str]) -> int:
    args = parse_args(argv)
    logging.basicConfig(
        level=getattr(logging, args.log_level.upper(), logging.INFO),
        format="%(asctime)s | %(levelname)s | %(message)s",
    )

    cfg = OmegaConf.load(args.config)
    dataset = _build_dataset(cfg)

    if args.inspect_items:
        _inspect_items(dataset, args.inspect_items)

    dataset_params = cfg.dataset.params
    batch_size = args.batch_size or getattr(cfg.training, f"batch_size_{args.flow}")
    num_workers = args.num_workers if args.num_workers is not None else dataset_params.num_workers
    timeout = args.timeout if args.timeout is not None else dataset_params.dataloader_timeout

    if num_workers == 0:
        persistent_workers = False
    else:
        persistent_workers = args.persistent_workers or bool(dataset_params.persistent_workers)

    dataloader_kwargs = {
        "dataset": dataset,
        "batch_size": batch_size,
        "shuffle": False,
        "num_workers": num_workers,
        "drop_last": True,
        "pin_memory": bool(dataset_params.pin_memory),
        "timeout": timeout,
        "persistent_workers": persistent_workers,
        "collate_fn": _collate_fn_audio,
    }
    if args.prefetch_factor is not None and num_workers > 0:
        dataloader_kwargs["prefetch_factor"] = args.prefetch_factor

    logging.info(
        "Starting DataLoader debug: batch_size=%d num_workers=%d timeout=%s persistent=%s",
        batch_size,
        num_workers,
        timeout,
        persistent_workers,
    )

    dataloader = DataLoader(**dataloader_kwargs)

    max_batches = args.max_batches
    iterator = iter(dataloader)

    processed = 0
    while True:
        if max_batches and processed >= max_batches:
            break
        tick = time.perf_counter()
        try:
            batch = next(iterator)
        except StopIteration:
            logging.info("Reached end of DataLoader after %d batches", processed)
            break
        elapsed = time.perf_counter() - tick
        _log_batch_summary(processed, batch, elapsed)
        processed += 1

    return 0


if __name__ == "__main__":
    raise SystemExit(main(sys.argv[1:]))