Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,109 Bytes
7bfbdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
#!/usr/bin/env python3
"""Utility to reproduce and debug the speech DataLoader used in training.
This script pulls the speech dataset configuration from the Omada
instruction-tuning config, instantiates the same `MixedSpeechTextDataset`, and
iterates a configurable number of batches while measuring how long each fetch
takes. Use it to spot slow or stuck samples without launching the full training
job.
Typical usage::
python AIDAS/MMaDA/script/debug_speech_dataloader.py \
--config AIDAS/MMaDA/configs/omada_instruction_tuning.yaml \
--flow s2t --max-batches 5 --num-workers 1 --timeout 0
Pass `--inspect-items` for a direct `dataset[idx]` sweep when a specific sample
seems suspicious.
"""
from __future__ import annotations
import argparse
import itertools
import logging
import sys
import time
from pathlib import Path
from typing import Any, Iterable, List
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from MMaDA.training.data import MixedSpeechTextDataset
def _collate_fn_audio(batch: List[dict[str, Any]]) -> dict[str, List[Any]]:
"""Match the collate function used in training for speech flows."""
return {
"audio_path": [item["audio_path"] for item in batch],
"text": [item["text"] for item in batch],
"audio_tokens": [item.get("audio_tokens") for item in batch],
}
def _as_list_of_dicts(cfg_fragment: Any) -> List[dict[str, Any]]:
container = OmegaConf.to_container(cfg_fragment, resolve=True)
if not isinstance(container, Iterable): # pragma: no cover - sanity guard
raise TypeError("audio_data config must be a list of dataset dicts")
return list(container) # type: ignore[arg-type]
def _build_dataset(cfg) -> MixedSpeechTextDataset:
dataset_cfg = cfg.dataset.params
audio_data_cfg = _as_list_of_dicts(dataset_cfg.audio_data)
return MixedSpeechTextDataset(audio_data_cfg)
def _log_batch_summary(idx: int, batch: dict[str, List[Any]], elapsed: float) -> None:
audio_paths = batch.get("audio_path", [])
sample = audio_paths[0] if audio_paths else "<empty>"
logging.info(
"batch=%d size=%d elapsed=%.2fs sample=%s",
idx,
len(audio_paths),
elapsed,
sample,
)
def _inspect_items(dataset: MixedSpeechTextDataset, max_items: int) -> None:
logging.info("Inspecting individual dataset items (max=%d)", max_items)
for idx in itertools.islice(range(len(dataset)), max_items):
tick = time.perf_counter()
try:
item = dataset[idx]
except Exception as exc: # pragma: no cover - diagnostic path
logging.error("idx=%d failed: %s", idx, exc)
continue
elapsed = time.perf_counter() - tick
logging.info(
"idx=%d elapsed=%.2fs path=%s text_len=%d tokens=%s",
idx,
elapsed,
item.get("audio_path"),
len(item.get("text", "")),
"cached" if item.get("audio_tokens") is not None else "None",
)
def parse_args(argv: List[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--config",
type=Path,
default=Path("AIDAS/MMaDA/configs/omada_instruction_tuning.yaml"),
help="Path to the training config YAML",
)
parser.add_argument(
"--flow",
choices=["s2t", "t2s"],
default="s2t",
help="Which speech flow's batch size defaults to use",
)
parser.add_argument(
"--batch-size",
type=int,
default=None,
help="Override batch size (defaults to config.training.batch_size_<flow>)",
)
parser.add_argument(
"--num-workers",
type=int,
default=None,
help="Override DataLoader workers (defaults to config.dataset.params.num_workers)",
)
parser.add_argument(
"--persistent-workers",
action="store_true",
help="Enable persistent workers regardless of config",
)
parser.add_argument(
"--timeout",
type=float,
default=None,
help="DataLoader timeout in seconds (defaults to config.dataset.params.dataloader_timeout)",
)
parser.add_argument(
"--max-batches",
type=int,
default=10,
help="Number of batches to iterate (0 means run through the entire dataset)",
)
parser.add_argument(
"--inspect-items",
type=int,
default=0,
help="If >0, bypass the DataLoader and inspect this many individual dataset items first",
)
parser.add_argument(
"--prefetch-factor",
type=int,
default=None,
help="Optional override for DataLoader prefetch_factor",
)
parser.add_argument(
"--log-level",
default="INFO",
help="Logging level",
)
return parser.parse_args(argv)
def main(argv: List[str]) -> int:
args = parse_args(argv)
logging.basicConfig(
level=getattr(logging, args.log_level.upper(), logging.INFO),
format="%(asctime)s | %(levelname)s | %(message)s",
)
cfg = OmegaConf.load(args.config)
dataset = _build_dataset(cfg)
if args.inspect_items:
_inspect_items(dataset, args.inspect_items)
dataset_params = cfg.dataset.params
batch_size = args.batch_size or getattr(cfg.training, f"batch_size_{args.flow}")
num_workers = args.num_workers if args.num_workers is not None else dataset_params.num_workers
timeout = args.timeout if args.timeout is not None else dataset_params.dataloader_timeout
if num_workers == 0:
persistent_workers = False
else:
persistent_workers = args.persistent_workers or bool(dataset_params.persistent_workers)
dataloader_kwargs = {
"dataset": dataset,
"batch_size": batch_size,
"shuffle": False,
"num_workers": num_workers,
"drop_last": True,
"pin_memory": bool(dataset_params.pin_memory),
"timeout": timeout,
"persistent_workers": persistent_workers,
"collate_fn": _collate_fn_audio,
}
if args.prefetch_factor is not None and num_workers > 0:
dataloader_kwargs["prefetch_factor"] = args.prefetch_factor
logging.info(
"Starting DataLoader debug: batch_size=%d num_workers=%d timeout=%s persistent=%s",
batch_size,
num_workers,
timeout,
persistent_workers,
)
dataloader = DataLoader(**dataloader_kwargs)
max_batches = args.max_batches
iterator = iter(dataloader)
processed = 0
while True:
if max_batches and processed >= max_batches:
break
tick = time.perf_counter()
try:
batch = next(iterator)
except StopIteration:
logging.info("Reached end of DataLoader after %d batches", processed)
break
elapsed = time.perf_counter() - tick
_log_batch_summary(processed, batch, elapsed)
processed += 1
return 0
if __name__ == "__main__":
raise SystemExit(main(sys.argv[1:]))
|