Spaces:
Paused
Paused
Update teacher_agent_dev/compare_strategies.py
Browse files- teacher_agent_dev/compare_strategies.py +131 -425
teacher_agent_dev/compare_strategies.py
CHANGED
|
@@ -9,6 +9,8 @@ Uses LM Student (DistilBERT) instead of MockStudentAgent.
|
|
| 9 |
|
| 10 |
import sys
|
| 11 |
import os
|
|
|
|
|
|
|
| 12 |
from pathlib import Path
|
| 13 |
|
| 14 |
# Add student_agent_dev to path for LM student import
|
|
@@ -46,9 +48,6 @@ from train_teacher import train_teacher
|
|
| 46 |
def evaluate_difficult_questions(student, generator: MockTaskGenerator, num_questions: int = 20) -> float:
|
| 47 |
"""
|
| 48 |
Evaluate student on difficult questions from all topics.
|
| 49 |
-
|
| 50 |
-
Returns:
|
| 51 |
-
Accuracy on difficult questions (0.0 to 1.0)
|
| 52 |
"""
|
| 53 |
topics = generator.get_available_topics()
|
| 54 |
eval_tasks = []
|
|
@@ -65,82 +64,58 @@ def evaluate_difficult_questions(student, generator: MockTaskGenerator, num_ques
|
|
| 65 |
def train_strategy_random(num_iterations: int = 500, seed: int = 42, target_accuracy: float = 0.75) -> Dict:
|
| 66 |
"""
|
| 67 |
Strategy 1: Random questions until student can confidently pass difficult questions.
|
| 68 |
-
|
| 69 |
-
Selection strategy:
|
| 70 |
-
- Randomly chooses a topic (uniform across all topics)
|
| 71 |
-
- Randomly chooses a difficulty (uniform across all difficulties)
|
| 72 |
-
- No curriculum structure - completely random
|
| 73 |
-
|
| 74 |
-
Args:
|
| 75 |
-
num_iterations: Maximum iterations to train
|
| 76 |
-
seed: Random seed
|
| 77 |
-
target_accuracy: Target accuracy on difficult questions to consider "passing"
|
| 78 |
-
|
| 79 |
-
Returns:
|
| 80 |
-
Training history dictionary
|
| 81 |
"""
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
rng = random.Random(seed)
|
| 84 |
|
| 85 |
-
# Use LM Student instead of MockStudentAgent
|
| 86 |
-
# LM Student uses retention_constant instead of forgetting_rate (higher = slower forgetting)
|
| 87 |
-
# retention_constant=80.0 means ~80% retention after 1 time unit
|
| 88 |
-
# Get device from environment or default to cpu
|
| 89 |
device = os.environ.get("CUDA_DEVICE", "cpu")
|
| 90 |
if device == "cuda":
|
| 91 |
try:
|
| 92 |
import torch
|
| 93 |
if torch.cuda.is_available():
|
| 94 |
-
|
| 95 |
-
# Verify GPU actually works
|
| 96 |
-
gpu_name = torch.cuda.get_device_name(0)
|
| 97 |
-
print(f"✅ Using GPU: {gpu_name}")
|
| 98 |
-
except Exception as e:
|
| 99 |
-
print(f"⚠️ GPU access failed: {e}, using CPU")
|
| 100 |
-
device = "cpu"
|
| 101 |
else:
|
| 102 |
device = "cpu"
|
| 103 |
-
|
| 104 |
-
except ImportError:
|
| 105 |
-
device = "cpu"
|
| 106 |
-
print("⚠️ PyTorch not available, using CPU")
|
| 107 |
-
except Exception as e:
|
| 108 |
device = "cpu"
|
| 109 |
-
print(f"⚠️ GPU check error: {e}, using CPU")
|
| 110 |
|
| 111 |
print(f"🔧 LM Student device: {device}")
|
| 112 |
|
| 113 |
student = LMStudentAgent(
|
| 114 |
-
learning_rate=5e-5,
|
| 115 |
-
retention_constant=80.0,
|
| 116 |
-
device=device,
|
| 117 |
max_length=256,
|
| 118 |
gradient_accumulation_steps=4
|
| 119 |
) if USE_LM_STUDENT else MockStudentAgent(learning_rate=0.15, forgetting_rate=0.01, seed=seed)
|
| 120 |
-
|
|
|
|
|
|
|
| 121 |
|
| 122 |
topics = generator.get_available_topics()
|
| 123 |
difficulties = generator.get_available_difficulties()
|
| 124 |
|
| 125 |
# Evaluation on difficult questions - CREATE FIXED SET ONCE
|
| 126 |
-
# Use 'expert' or 'master' for truly difficult questions (with expanded difficulty levels)
|
| 127 |
hard_eval_tasks = []
|
| 128 |
-
eval_difficulty = 'expert' if 'expert' in difficulties else 'hard'
|
| 129 |
for topic in topics:
|
| 130 |
-
for _ in range(5):
|
| 131 |
hard_eval_tasks.append(generator.generate_task(topic, eval_difficulty))
|
| 132 |
|
| 133 |
-
# Create FIXED general eval set
|
| 134 |
general_eval_tasks = [
|
| 135 |
generator.generate_task(topic, 'medium')
|
| 136 |
for topic in topics
|
| 137 |
-
for _ in range(3)
|
| 138 |
]
|
| 139 |
|
| 140 |
history = {
|
| 141 |
'iterations': [],
|
| 142 |
'student_accuracies': [],
|
| 143 |
-
'difficult_accuracies': [],
|
| 144 |
'teacher_rewards': [],
|
| 145 |
'topics': [],
|
| 146 |
'difficulties': [],
|
|
@@ -152,25 +127,19 @@ def train_strategy_random(num_iterations: int = 500, seed: int = 42, target_accu
|
|
| 152 |
iterator = tqdm(iterator, desc="Random Strategy", unit="iter")
|
| 153 |
|
| 154 |
for iteration in iterator:
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
difficulty = rng.choice(difficulties) # Random difficulty
|
| 158 |
|
| 159 |
task = generator.generate_task(topic, difficulty)
|
| 160 |
|
| 161 |
-
# Evaluate before learning
|
| 162 |
accuracy_before = student.evaluate(hard_eval_tasks)
|
| 163 |
-
|
| 164 |
-
# Student learns
|
| 165 |
student.learn(task)
|
| 166 |
|
| 167 |
-
# Evaluate after learning (BEFORE time advance for accurate snapshot)
|
| 168 |
accuracy_after = student.evaluate(hard_eval_tasks)
|
| 169 |
-
general_accuracy = student.evaluate(general_eval_tasks)
|
| 170 |
|
| 171 |
student.advance_time(1.0)
|
| 172 |
|
| 173 |
-
# Track metrics
|
| 174 |
history['iterations'].append(iteration)
|
| 175 |
history['student_accuracies'].append(general_accuracy)
|
| 176 |
history['difficult_accuracies'].append(accuracy_after)
|
|
@@ -178,8 +147,7 @@ def train_strategy_random(num_iterations: int = 500, seed: int = 42, target_accu
|
|
| 178 |
history['topics'].append(topic)
|
| 179 |
history['difficulties'].append(difficulty)
|
| 180 |
|
| 181 |
-
|
| 182 |
-
if accuracy_after >= target_accuracy and iteration > 50: # Give at least 50 iterations
|
| 183 |
if 'reached_target' not in locals():
|
| 184 |
print(f" Random strategy reached target accuracy {target_accuracy:.2f} at iteration {iteration}")
|
| 185 |
reached_target = True
|
|
@@ -190,20 +158,10 @@ def train_strategy_random(num_iterations: int = 500, seed: int = 42, target_accu
|
|
| 190 |
def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dict:
|
| 191 |
"""
|
| 192 |
Strategy 2: Progressive difficulty within each family.
|
| 193 |
-
Easy → Medium → Hard for each topic, then move to next topic.
|
| 194 |
-
|
| 195 |
-
Args:
|
| 196 |
-
num_iterations: Number of iterations
|
| 197 |
-
seed: Random seed
|
| 198 |
-
|
| 199 |
-
Returns:
|
| 200 |
-
Training history dictionary
|
| 201 |
"""
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
# Using Option 1: lower forgetting rate
|
| 206 |
-
# Use LM Student instead of MockStudentAgent
|
| 207 |
student = LMStudentAgent(
|
| 208 |
learning_rate=5e-5,
|
| 209 |
retention_constant=80.0,
|
|
@@ -211,26 +169,24 @@ def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dic
|
|
| 211 |
max_length=256,
|
| 212 |
gradient_accumulation_steps=4
|
| 213 |
) if USE_LM_STUDENT else MockStudentAgent(learning_rate=0.15, forgetting_rate=0.01, seed=seed)
|
| 214 |
-
|
|
|
|
|
|
|
| 215 |
|
| 216 |
topics = generator.get_available_topics()
|
| 217 |
all_difficulties = generator.get_available_difficulties()
|
| 218 |
-
|
| 219 |
-
difficulties = all_difficulties # Use all 7 difficulty levels
|
| 220 |
|
| 221 |
-
# Evaluation on difficult questions - CREATE FIXED SET ONCE
|
| 222 |
-
# Use 'expert' or 'master' for truly difficult questions
|
| 223 |
hard_eval_tasks = []
|
| 224 |
eval_difficulty = 'expert' if 'expert' in all_difficulties else 'hard'
|
| 225 |
for topic in topics:
|
| 226 |
for _ in range(5):
|
| 227 |
hard_eval_tasks.append(generator.generate_task(topic, eval_difficulty))
|
| 228 |
|
| 229 |
-
# Create FIXED general eval set (medium difficulty, all topics)
|
| 230 |
general_eval_tasks = [
|
| 231 |
generator.generate_task(topic, 'medium')
|
| 232 |
for topic in topics
|
| 233 |
-
for _ in range(3)
|
| 234 |
]
|
| 235 |
|
| 236 |
history = {
|
|
@@ -243,8 +199,6 @@ def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dic
|
|
| 243 |
'strategy': 'progressive'
|
| 244 |
}
|
| 245 |
|
| 246 |
-
# Progressive curriculum: cycle through topics, increase difficulty over time
|
| 247 |
-
# Structure: For each topic, do easy → medium → hard
|
| 248 |
questions_per_difficulty = max(1, num_iterations // (len(topics) * len(difficulties)))
|
| 249 |
|
| 250 |
iterator = range(num_iterations)
|
|
@@ -252,7 +206,6 @@ def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dic
|
|
| 252 |
iterator = tqdm(iterator, desc="Progressive Strategy", unit="iter")
|
| 253 |
|
| 254 |
for iteration in iterator:
|
| 255 |
-
# Determine current phase
|
| 256 |
phase = iteration // questions_per_difficulty if questions_per_difficulty > 0 else iteration
|
| 257 |
topic_idx = (phase // len(difficulties)) % len(topics)
|
| 258 |
diff_idx = phase % len(difficulties)
|
|
@@ -262,19 +215,14 @@ def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dic
|
|
| 262 |
|
| 263 |
task = generator.generate_task(topic, difficulty)
|
| 264 |
|
| 265 |
-
# Evaluate before learning
|
| 266 |
accuracy_before = student.evaluate(hard_eval_tasks)
|
| 267 |
-
|
| 268 |
-
# Student learns
|
| 269 |
student.learn(task)
|
| 270 |
|
| 271 |
-
# Evaluate after learning (BEFORE time advance for accurate snapshot)
|
| 272 |
accuracy_after = student.evaluate(hard_eval_tasks)
|
| 273 |
-
general_accuracy = student.evaluate(general_eval_tasks)
|
| 274 |
|
| 275 |
student.advance_time(1.0)
|
| 276 |
|
| 277 |
-
# Track metrics
|
| 278 |
history['iterations'].append(iteration)
|
| 279 |
history['student_accuracies'].append(general_accuracy)
|
| 280 |
history['difficult_accuracies'].append(accuracy_after)
|
|
@@ -288,18 +236,15 @@ def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dic
|
|
| 288 |
def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
|
| 289 |
"""
|
| 290 |
Strategy 3: RL Teacher Agent learns optimal curriculum.
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
| 295 |
|
| 296 |
-
Returns:
|
| 297 |
-
Training history dictionary with difficult_accuracies added
|
| 298 |
-
"""
|
| 299 |
-
# Initialize components
|
| 300 |
-
generator = MockTaskGenerator(seed=seed)
|
| 301 |
-
teacher = TeacherAgent(exploration_bonus=2.0, task_generator=generator) # Dynamic action space
|
| 302 |
-
# Use LM Student instead of MockStudentAgent
|
| 303 |
student = LMStudentAgent(
|
| 304 |
learning_rate=5e-5,
|
| 305 |
retention_constant=80.0,
|
|
@@ -310,14 +255,12 @@ def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
|
|
| 310 |
|
| 311 |
topics = generator.get_available_topics()
|
| 312 |
|
| 313 |
-
# Create evaluation sets
|
| 314 |
eval_tasks = [
|
| 315 |
generator.generate_task(topic, 'medium')
|
| 316 |
for topic in topics
|
| 317 |
for _ in range(3)
|
| 318 |
]
|
| 319 |
|
| 320 |
-
# Create difficult question evaluation set - use expert/master level
|
| 321 |
all_difficulties = generator.get_available_difficulties()
|
| 322 |
eval_difficulty = 'expert' if 'expert' in all_difficulties else 'hard'
|
| 323 |
hard_eval_tasks = [
|
|
@@ -326,7 +269,6 @@ def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
|
|
| 326 |
for _ in range(5)
|
| 327 |
]
|
| 328 |
|
| 329 |
-
# Track metrics
|
| 330 |
history = {
|
| 331 |
'iterations': [],
|
| 332 |
'student_accuracies': [],
|
|
@@ -344,30 +286,22 @@ def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
|
|
| 344 |
iterator = tqdm(iterator, desc="Teacher Strategy", unit="iter")
|
| 345 |
|
| 346 |
for iteration in iterator:
|
| 347 |
-
# 1. Get student state
|
| 348 |
student_state = student.get_state()
|
| 349 |
-
|
| 350 |
-
# 2. Teacher selects action
|
| 351 |
action = teacher.select_action(student_state)
|
| 352 |
|
| 353 |
-
# 3. Generate task
|
| 354 |
if action.is_review:
|
| 355 |
task = generator.generate_task(action.topic, 'medium')
|
| 356 |
else:
|
| 357 |
task = generator.generate_task(action.topic, action.difficulty)
|
| 358 |
|
| 359 |
-
# 4. Evaluate student BEFORE learning
|
| 360 |
accuracy_before = student.evaluate(eval_tasks)
|
| 361 |
difficult_acc_before = student.evaluate(hard_eval_tasks)
|
| 362 |
|
| 363 |
-
# 5. Student learns from task
|
| 364 |
student.learn(task)
|
| 365 |
|
| 366 |
-
# 6. Evaluate student AFTER learning
|
| 367 |
accuracy_after = student.evaluate(eval_tasks)
|
| 368 |
difficult_acc_after = student.evaluate(hard_eval_tasks)
|
| 369 |
|
| 370 |
-
# 7. Compute reward for teacher
|
| 371 |
reward = compute_reward(
|
| 372 |
accuracy_before,
|
| 373 |
accuracy_after,
|
|
@@ -375,13 +309,9 @@ def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
|
|
| 375 |
action.is_review
|
| 376 |
)
|
| 377 |
|
| 378 |
-
# 8. Update teacher's policy
|
| 379 |
teacher.update(action, reward)
|
| 380 |
-
|
| 381 |
-
# 9. Time passes (for forgetting)
|
| 382 |
student.advance_time(1.0)
|
| 383 |
|
| 384 |
-
# 10. Log metrics
|
| 385 |
history['iterations'].append(iteration)
|
| 386 |
history['student_accuracies'].append(accuracy_after)
|
| 387 |
history['difficult_accuracies'].append(difficult_acc_after)
|
|
@@ -397,231 +327,116 @@ def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
|
|
| 397 |
def plot_comparison(histories: Dict[str, Dict], save_path: str = 'teacher_agent_dev/comparison_all_strategies.png'):
|
| 398 |
"""
|
| 399 |
Create comprehensive comparison plots of all three strategies.
|
| 400 |
-
|
| 401 |
-
Args:
|
| 402 |
-
histories: Dictionary mapping strategy name to history
|
| 403 |
-
e.g., {'Random': history1, 'Progressive': history2, 'Teacher': history3}
|
| 404 |
-
save_path: Where to save the plot
|
| 405 |
"""
|
| 406 |
import matplotlib.pyplot as plt
|
| 407 |
|
|
|
|
|
|
|
|
|
|
| 408 |
fig, axes = plt.subplots(4, 1, figsize=(16, 14))
|
| 409 |
|
| 410 |
-
# Define colors and styles for each strategy
|
| 411 |
colors = {
|
| 412 |
'Random': '#FF6B6B', # Red
|
| 413 |
'Progressive': '#4ECDC4', # Teal
|
| 414 |
-
'Teacher': '#2ECC71' # Green
|
| 415 |
}
|
| 416 |
|
| 417 |
line_styles = {
|
| 418 |
-
'Random': '--',
|
| 419 |
-
'Progressive': '-.',
|
| 420 |
-
'Teacher': '-'
|
| 421 |
}
|
| 422 |
|
| 423 |
line_widths = {
|
| 424 |
'Random': 2.0,
|
| 425 |
'Progressive': 2.0,
|
| 426 |
-
'Teacher': 3.5
|
| 427 |
}
|
| 428 |
|
| 429 |
-
# 1. Plot 1: General Accuracy
|
| 430 |
ax = axes[0]
|
| 431 |
-
|
| 432 |
-
# Plot raw data with different styles to show stochasticity vs smoothness
|
| 433 |
for name, history in histories.items():
|
| 434 |
iterations = history['iterations']
|
| 435 |
accuracies = history['student_accuracies']
|
| 436 |
|
| 437 |
-
if
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
window = 10 if len(accuracies) > 50 else 5
|
| 441 |
smoothed = np.convolve(accuracies, np.ones(window)/window, mode='same')
|
| 442 |
ax.plot(iterations, smoothed,
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
zorder=10) # On top
|
| 449 |
else:
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
ax.plot(iterations, smoothed,
|
| 465 |
-
color=colors[name],
|
| 466 |
-
linestyle=line_styles[name],
|
| 467 |
-
linewidth=line_widths[name],
|
| 468 |
-
alpha=0.8)
|
| 469 |
-
else:
|
| 470 |
-
ax.plot(iterations, accuracies,
|
| 471 |
-
label=f'{name} (Stochastic)',
|
| 472 |
-
color=colors[name],
|
| 473 |
-
linestyle=line_styles[name],
|
| 474 |
-
linewidth=line_widths[name],
|
| 475 |
-
alpha=0.8)
|
| 476 |
-
|
| 477 |
-
ax.set_xlabel('Training Iteration', fontsize=12, fontweight='bold')
|
| 478 |
-
ax.set_ylabel('General Accuracy', fontsize=12, fontweight='bold')
|
| 479 |
-
ax.set_title('Learning Curves: Exponential (Teacher) vs Stochastic (Baselines)', fontsize=14, fontweight='bold')
|
| 480 |
-
ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
|
| 481 |
-
ax.grid(True, alpha=0.3, linestyle='--')
|
| 482 |
-
ax.set_ylim([0.2, 1.0])
|
| 483 |
-
|
| 484 |
-
# Add text annotation highlighting exponential vs stochastic
|
| 485 |
-
ax.text(0.02, 0.98,
|
| 486 |
-
'📈 Teacher: Smooth exponential growth\n📉 Baselines: Erratic, stochastic learning',
|
| 487 |
-
transform=ax.transAxes,
|
| 488 |
-
fontsize=10,
|
| 489 |
-
verticalalignment='top',
|
| 490 |
-
bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
|
| 491 |
-
|
| 492 |
-
# Add final accuracy annotations
|
| 493 |
-
for name, history in histories.items():
|
| 494 |
-
final_acc = history['student_accuracies'][-1]
|
| 495 |
-
final_iter = history['iterations'][-1]
|
| 496 |
-
ax.annotate(f'{final_acc:.3f}',
|
| 497 |
-
xy=(final_iter, final_acc),
|
| 498 |
-
xytext=(10, 10),
|
| 499 |
-
textcoords='offset points',
|
| 500 |
-
fontsize=10,
|
| 501 |
-
bbox=dict(boxstyle='round,pad=0.3', facecolor=colors[name], alpha=0.5),
|
| 502 |
-
arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))
|
| 503 |
-
|
| 504 |
-
# 2. Plot 2: Difficult Question Accuracy - Show Exponential Growth Clearly
|
| 505 |
ax = axes[1]
|
| 506 |
-
|
| 507 |
for name, history in histories.items():
|
| 508 |
iterations = history['iterations']
|
| 509 |
difficult_accuracies = history['difficult_accuracies']
|
| 510 |
|
| 511 |
-
if
|
| 512 |
-
|
| 513 |
-
window = 8 # Less smoothing to show exponential shape
|
| 514 |
smoothed = np.convolve(difficult_accuracies, np.ones(window)/window, mode='same')
|
| 515 |
ax.plot(iterations, smoothed,
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
alpha=0.95,
|
| 521 |
-
zorder=10)
|
| 522 |
else:
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
color=colors[name],
|
| 538 |
-
linestyle=line_styles[name],
|
| 539 |
-
linewidth=line_widths[name],
|
| 540 |
-
alpha=0.8)
|
| 541 |
-
else:
|
| 542 |
-
ax.plot(iterations, difficult_accuracies,
|
| 543 |
-
label=name,
|
| 544 |
-
color=colors[name],
|
| 545 |
-
linestyle=line_styles[name],
|
| 546 |
-
linewidth=line_widths[name],
|
| 547 |
-
alpha=0.8)
|
| 548 |
-
|
| 549 |
-
ax.set_xlabel('Training Iteration', fontsize=12, fontweight='bold')
|
| 550 |
-
ax.set_ylabel('Accuracy on Difficult Questions', fontsize=12, fontweight='bold')
|
| 551 |
-
ax.set_title('Difficult Question Performance: Exponential vs Stochastic Learning',
|
| 552 |
-
fontsize=14, fontweight='bold', color='darkred')
|
| 553 |
-
ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
|
| 554 |
-
ax.grid(True, alpha=0.3, linestyle='--')
|
| 555 |
-
ax.set_ylim([0.2, 1.0])
|
| 556 |
-
|
| 557 |
-
# Highlight target accuracy line (75%)
|
| 558 |
-
ax.axhline(y=0.75, color='gray', linestyle=':', linewidth=1, alpha=0.5)
|
| 559 |
-
|
| 560 |
-
# Add final accuracy annotations
|
| 561 |
-
for name, history in histories.items():
|
| 562 |
-
final_acc = history['difficult_accuracies'][-1]
|
| 563 |
-
final_iter = history['iterations'][-1]
|
| 564 |
-
ax.annotate(f'{final_acc:.3f}',
|
| 565 |
-
xy=(final_iter, final_acc),
|
| 566 |
-
xytext=(10, 10),
|
| 567 |
-
textcoords='offset points',
|
| 568 |
-
fontsize=10,
|
| 569 |
-
bbox=dict(boxstyle='round,pad=0.3', facecolor=colors[name], alpha=0.3),
|
| 570 |
-
arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))
|
| 571 |
-
|
| 572 |
-
# 3. Plot 3: Curriculum Efficiency - Topic Coverage Over Time
|
| 573 |
ax = axes[2]
|
| 574 |
-
|
| 575 |
-
# Track unique topics seen over time to show curriculum diversity
|
| 576 |
for name, history in histories.items():
|
| 577 |
iterations = history['iterations']
|
| 578 |
topics_seen = history['topics']
|
| 579 |
|
| 580 |
-
# Count unique topics up to each iteration
|
| 581 |
unique_topics = []
|
| 582 |
seen_so_far = set()
|
| 583 |
-
|
| 584 |
for topic in topics_seen:
|
| 585 |
seen_so_far.add(topic)
|
| 586 |
unique_topics.append(len(seen_so_far))
|
| 587 |
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
label=f'{name}',
|
| 600 |
-
color=colors[name],
|
| 601 |
-
linestyle=line_styles[name],
|
| 602 |
-
linewidth=line_widths[name],
|
| 603 |
-
alpha=0.8,
|
| 604 |
-
marker='s', markersize=2)
|
| 605 |
-
|
| 606 |
-
ax.set_xlabel('Training Iteration', fontsize=12, fontweight='bold')
|
| 607 |
-
ax.set_ylabel('Number of Unique Topics Covered', fontsize=12, fontweight='bold')
|
| 608 |
-
ax.set_title('Curriculum Diversity: Topic Coverage Over Time',
|
| 609 |
-
fontsize=14, fontweight='bold')
|
| 610 |
-
ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
|
| 611 |
-
ax.grid(True, alpha=0.3, linestyle='--')
|
| 612 |
-
|
| 613 |
-
# Add total topics line if available
|
| 614 |
-
if histories:
|
| 615 |
-
first_history = list(histories.values())[0]
|
| 616 |
-
if 'topics' in first_history and first_history['topics']:
|
| 617 |
-
all_unique_topics = len(set(first_history['topics']))
|
| 618 |
-
ax.axhline(y=all_unique_topics, color='gray', linestyle=':',
|
| 619 |
-
alpha=0.5, label=f'Total topics: {all_unique_topics}')
|
| 620 |
-
ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
|
| 621 |
-
|
| 622 |
-
# 4. Plot 4: Learning Speed Comparison (Iterations to reach 75% on difficult)
|
| 623 |
-
ax = axes[3]
|
| 624 |
|
|
|
|
|
|
|
| 625 |
target_acc = 0.75
|
| 626 |
strategy_stats = {}
|
| 627 |
|
|
@@ -629,7 +444,6 @@ def plot_comparison(histories: Dict[str, Dict], save_path: str = 'teacher_agent_
|
|
| 629 |
difficult_accuracies = history['difficult_accuracies']
|
| 630 |
iterations = history['iterations']
|
| 631 |
|
| 632 |
-
# Find when target is reached
|
| 633 |
reached_target = False
|
| 634 |
target_iteration = len(iterations) - 1
|
| 635 |
|
|
@@ -645,7 +459,6 @@ def plot_comparison(histories: Dict[str, Dict], save_path: str = 'teacher_agent_
|
|
| 645 |
'final_acc': difficult_accuracies[-1]
|
| 646 |
}
|
| 647 |
|
| 648 |
-
# Create bar plot
|
| 649 |
names = list(strategy_stats.keys())
|
| 650 |
iterations_to_target = [
|
| 651 |
strategy_stats[n]['iteration'] if strategy_stats[n]['reached'] else len(histories[n]['iterations'])
|
|
@@ -656,169 +469,62 @@ def plot_comparison(histories: Dict[str, Dict], save_path: str = 'teacher_agent_
|
|
| 656 |
x = np.arange(len(names))
|
| 657 |
width = 0.35
|
| 658 |
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
|
| 665 |
-
ax.
|
| 666 |
-
ax.set_ylabel('Iterations / Scaled Accuracy', fontsize=12, fontweight='bold')
|
| 667 |
-
ax.set_title('Learning Efficiency: Iterations to Reach Target vs Final Performance',
|
| 668 |
-
fontsize=14, fontweight='bold')
|
| 669 |
ax.set_xticks(x)
|
| 670 |
ax.set_xticklabels(names)
|
| 671 |
-
ax.legend(
|
| 672 |
-
ax.grid(True, alpha=0.3, linestyle='--', axis='y')
|
| 673 |
-
|
| 674 |
-
# Add value labels on bars
|
| 675 |
-
for i, (bar1, bar2, name) in enumerate(zip(bars1, bars2, names)):
|
| 676 |
-
height1 = bar1.get_height()
|
| 677 |
-
height2 = bar2.get_height()
|
| 678 |
-
|
| 679 |
-
# Label for iterations
|
| 680 |
-
if strategy_stats[name]['reached']:
|
| 681 |
-
ax.text(bar1.get_x() + bar1.get_width()/2., height1,
|
| 682 |
-
f'{int(height1)}',
|
| 683 |
-
ha='center', va='bottom', fontsize=9, fontweight='bold')
|
| 684 |
-
else:
|
| 685 |
-
ax.text(bar1.get_x() + bar1.get_width()/2., height1,
|
| 686 |
-
'Not reached',
|
| 687 |
-
ha='center', va='bottom', fontsize=9, fontweight='bold')
|
| 688 |
-
|
| 689 |
-
# Label for final accuracy
|
| 690 |
-
ax.text(bar2.get_x() + bar2.get_width()/2., height2,
|
| 691 |
-
f'{final_accs[i]:.2f}',
|
| 692 |
-
ha='center', va='bottom', fontsize=9, fontweight='bold')
|
| 693 |
|
| 694 |
plt.tight_layout()
|
| 695 |
-
plt.savefig(save_path, dpi=150
|
| 696 |
print(f"\n✅ Saved comparison plot to {save_path}")
|
| 697 |
plt.close()
|
| 698 |
-
|
| 699 |
-
# Print summary statistics
|
| 700 |
-
print("\n" + "=" * 70)
|
| 701 |
-
print("STRATEGY COMPARISON SUMMARY")
|
| 702 |
-
print("=" * 70)
|
| 703 |
-
for name, stats in strategy_stats.items():
|
| 704 |
-
status = "✅ Reached" if stats['reached'] else "❌ Not reached"
|
| 705 |
-
print(f"{name:15s} | {status:15s} | Iterations: {stats['iteration']:4d} | Final Acc: {stats['final_acc']:.3f}")
|
| 706 |
-
print("=" * 70)
|
| 707 |
|
| 708 |
|
| 709 |
if __name__ == "__main__":
|
| 710 |
import argparse
|
| 711 |
import time
|
| 712 |
|
| 713 |
-
parser = argparse.ArgumentParser(
|
| 714 |
-
parser.add_argument('--seed', type=int, default=None
|
| 715 |
-
|
| 716 |
-
parser.add_argument('--
|
| 717 |
-
|
| 718 |
-
parser.add_argument('--deterministic', action='store_true',
|
| 719 |
-
help='Use fixed seed=42 for reproducible results (deterministic)')
|
| 720 |
-
parser.add_argument('--runs', type=int, default=1,
|
| 721 |
-
help='Number of runs for variance analysis (default: 1)')
|
| 722 |
|
| 723 |
args = parser.parse_args()
|
| 724 |
|
| 725 |
-
# Determine seed
|
| 726 |
if args.deterministic:
|
| 727 |
seed = 42
|
| 728 |
-
print("⚠️ Using deterministic mode (seed=42)
|
| 729 |
elif args.seed is not None:
|
| 730 |
seed = args.seed
|
| 731 |
-
print(f"Using specified seed: {seed}")
|
| 732 |
else:
|
| 733 |
-
seed = int(time.time()) % 10000
|
| 734 |
-
|
|
|
|
| 735 |
|
| 736 |
num_iterations = args.iterations
|
| 737 |
|
| 738 |
-
|
| 739 |
-
print("
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
print("
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
if args.runs > 1:
|
| 748 |
-
print(f"Running {args.runs} times for variance analysis...\n")
|
| 749 |
-
all_results = {
|
| 750 |
-
'Random': [],
|
| 751 |
-
'Progressive': [],
|
| 752 |
-
'Teacher': []
|
| 753 |
-
}
|
| 754 |
-
|
| 755 |
-
for run in range(args.runs):
|
| 756 |
-
run_seed = seed + run # Different seed for each run
|
| 757 |
-
print(f"Run {run + 1}/{args.runs} (seed={run_seed})...")
|
| 758 |
-
|
| 759 |
-
history_random = train_strategy_random(num_iterations=num_iterations, seed=run_seed)
|
| 760 |
-
history_progressive = train_strategy_progressive(num_iterations=num_iterations, seed=run_seed)
|
| 761 |
-
history_teacher = train_strategy_teacher(num_iterations=num_iterations, seed=run_seed)
|
| 762 |
-
|
| 763 |
-
all_results['Random'].append(history_random)
|
| 764 |
-
all_results['Progressive'].append(history_progressive)
|
| 765 |
-
all_results['Teacher'].append(history_teacher)
|
| 766 |
-
|
| 767 |
-
# Compute statistics across runs
|
| 768 |
-
print("\n" + "=" * 70)
|
| 769 |
-
print("VARIANCE ANALYSIS ACROSS RUNS")
|
| 770 |
-
print("=" * 70)
|
| 771 |
-
|
| 772 |
-
for strategy_name in ['Random', 'Progressive', 'Teacher']:
|
| 773 |
-
final_accs = [h['difficult_accuracies'][-1] for h in all_results[strategy_name]]
|
| 774 |
-
iterations_to_target = []
|
| 775 |
-
for h in all_results[strategy_name]:
|
| 776 |
-
target_acc = 0.75
|
| 777 |
-
reached = False
|
| 778 |
-
for i, acc in enumerate(h['difficult_accuracies']):
|
| 779 |
-
if acc >= target_acc:
|
| 780 |
-
iterations_to_target.append(i)
|
| 781 |
-
reached = True
|
| 782 |
-
break
|
| 783 |
-
if not reached:
|
| 784 |
-
iterations_to_target.append(len(h['difficult_accuracies']))
|
| 785 |
-
|
| 786 |
-
mean_final = np.mean(final_accs)
|
| 787 |
-
std_final = np.std(final_accs)
|
| 788 |
-
mean_iters = np.mean(iterations_to_target)
|
| 789 |
-
std_iters = np.std(iterations_to_target)
|
| 790 |
-
|
| 791 |
-
print(f"\n{strategy_name}:")
|
| 792 |
-
print(f" Final Accuracy: {mean_final:.3f} ± {std_final:.3f} (range: {min(final_accs):.3f} - {max(final_accs):.3f})")
|
| 793 |
-
print(f" Iterations to Target: {mean_iters:.1f} ± {std_iters:.1f} (range: {min(iterations_to_target)} - {max(iterations_to_target)})")
|
| 794 |
-
|
| 795 |
-
# Use first run for plotting (or could average)
|
| 796 |
-
history_random = all_results['Random'][0]
|
| 797 |
-
history_progressive = all_results['Progressive'][0]
|
| 798 |
-
history_teacher = all_results['Teacher'][0]
|
| 799 |
-
else:
|
| 800 |
-
# Single run
|
| 801 |
-
# Train all three strategies
|
| 802 |
-
print("Training Random Strategy...")
|
| 803 |
-
history_random = train_strategy_random(num_iterations=num_iterations, seed=seed)
|
| 804 |
-
|
| 805 |
-
print("\nTraining Progressive Strategy...")
|
| 806 |
-
history_progressive = train_strategy_progressive(num_iterations=num_iterations, seed=seed)
|
| 807 |
-
|
| 808 |
-
print("\nTraining Teacher Strategy...")
|
| 809 |
-
history_teacher = train_strategy_teacher(num_iterations=num_iterations, seed=seed)
|
| 810 |
|
| 811 |
-
# Create comparison plots
|
| 812 |
-
print("\nGenerating comparison plots...")
|
| 813 |
histories = {
|
| 814 |
'Random': history_random,
|
| 815 |
'Progressive': history_progressive,
|
| 816 |
'Teacher': history_teacher
|
| 817 |
}
|
| 818 |
|
| 819 |
-
plot_comparison(histories, save_path='comparison_all_strategies.png')
|
| 820 |
-
|
| 821 |
-
print("\n✅ Comparison complete! Check 'comparison_all_strategies.png'")
|
| 822 |
-
if not args.deterministic and args.seed is None:
|
| 823 |
-
print(f"💡 Tip: Results vary each run. Use --deterministic for reproducible results, or --seed <N> for specific seed.")
|
| 824 |
-
|
|
|
|
| 9 |
|
| 10 |
import sys
|
| 11 |
import os
|
| 12 |
+
import random # Added for global seeding
|
| 13 |
+
import numpy as np # Added for global seeding
|
| 14 |
from pathlib import Path
|
| 15 |
|
| 16 |
# Add student_agent_dev to path for LM student import
|
|
|
|
| 48 |
def evaluate_difficult_questions(student, generator: MockTaskGenerator, num_questions: int = 20) -> float:
|
| 49 |
"""
|
| 50 |
Evaluate student on difficult questions from all topics.
|
|
|
|
|
|
|
|
|
|
| 51 |
"""
|
| 52 |
topics = generator.get_available_topics()
|
| 53 |
eval_tasks = []
|
|
|
|
| 64 |
def train_strategy_random(num_iterations: int = 500, seed: int = 42, target_accuracy: float = 0.75) -> Dict:
|
| 65 |
"""
|
| 66 |
Strategy 1: Random questions until student can confidently pass difficult questions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"""
|
| 68 |
+
# Set global seeds to ensure MockTaskGenerator behaves deterministically
|
| 69 |
+
random.seed(seed)
|
| 70 |
+
np.random.seed(seed)
|
| 71 |
+
|
| 72 |
rng = random.Random(seed)
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
device = os.environ.get("CUDA_DEVICE", "cpu")
|
| 75 |
if device == "cuda":
|
| 76 |
try:
|
| 77 |
import torch
|
| 78 |
if torch.cuda.is_available():
|
| 79 |
+
print(f"✅ Using GPU: {torch.cuda.get_device_name(0)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
else:
|
| 81 |
device = "cpu"
|
| 82 |
+
except:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
device = "cpu"
|
|
|
|
| 84 |
|
| 85 |
print(f"🔧 LM Student device: {device}")
|
| 86 |
|
| 87 |
student = LMStudentAgent(
|
| 88 |
+
learning_rate=5e-5,
|
| 89 |
+
retention_constant=80.0,
|
| 90 |
+
device=device,
|
| 91 |
max_length=256,
|
| 92 |
gradient_accumulation_steps=4
|
| 93 |
) if USE_LM_STUDENT else MockStudentAgent(learning_rate=0.15, forgetting_rate=0.01, seed=seed)
|
| 94 |
+
|
| 95 |
+
# --- FIX 1: REMOVED seed=seed ---
|
| 96 |
+
generator = MockTaskGenerator()
|
| 97 |
|
| 98 |
topics = generator.get_available_topics()
|
| 99 |
difficulties = generator.get_available_difficulties()
|
| 100 |
|
| 101 |
# Evaluation on difficult questions - CREATE FIXED SET ONCE
|
|
|
|
| 102 |
hard_eval_tasks = []
|
| 103 |
+
eval_difficulty = 'expert' if 'expert' in difficulties else 'hard'
|
| 104 |
for topic in topics:
|
| 105 |
+
for _ in range(5):
|
| 106 |
hard_eval_tasks.append(generator.generate_task(topic, eval_difficulty))
|
| 107 |
|
| 108 |
+
# Create FIXED general eval set
|
| 109 |
general_eval_tasks = [
|
| 110 |
generator.generate_task(topic, 'medium')
|
| 111 |
for topic in topics
|
| 112 |
+
for _ in range(3)
|
| 113 |
]
|
| 114 |
|
| 115 |
history = {
|
| 116 |
'iterations': [],
|
| 117 |
'student_accuracies': [],
|
| 118 |
+
'difficult_accuracies': [],
|
| 119 |
'teacher_rewards': [],
|
| 120 |
'topics': [],
|
| 121 |
'difficulties': [],
|
|
|
|
| 127 |
iterator = tqdm(iterator, desc="Random Strategy", unit="iter")
|
| 128 |
|
| 129 |
for iteration in iterator:
|
| 130 |
+
topic = rng.choice(topics)
|
| 131 |
+
difficulty = rng.choice(difficulties)
|
|
|
|
| 132 |
|
| 133 |
task = generator.generate_task(topic, difficulty)
|
| 134 |
|
|
|
|
| 135 |
accuracy_before = student.evaluate(hard_eval_tasks)
|
|
|
|
|
|
|
| 136 |
student.learn(task)
|
| 137 |
|
|
|
|
| 138 |
accuracy_after = student.evaluate(hard_eval_tasks)
|
| 139 |
+
general_accuracy = student.evaluate(general_eval_tasks)
|
| 140 |
|
| 141 |
student.advance_time(1.0)
|
| 142 |
|
|
|
|
| 143 |
history['iterations'].append(iteration)
|
| 144 |
history['student_accuracies'].append(general_accuracy)
|
| 145 |
history['difficult_accuracies'].append(accuracy_after)
|
|
|
|
| 147 |
history['topics'].append(topic)
|
| 148 |
history['difficulties'].append(difficulty)
|
| 149 |
|
| 150 |
+
if accuracy_after >= target_accuracy and iteration > 50:
|
|
|
|
| 151 |
if 'reached_target' not in locals():
|
| 152 |
print(f" Random strategy reached target accuracy {target_accuracy:.2f} at iteration {iteration}")
|
| 153 |
reached_target = True
|
|
|
|
| 158 |
def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dict:
|
| 159 |
"""
|
| 160 |
Strategy 2: Progressive difficulty within each family.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
"""
|
| 162 |
+
random.seed(seed)
|
| 163 |
+
np.random.seed(seed)
|
| 164 |
+
|
|
|
|
|
|
|
| 165 |
student = LMStudentAgent(
|
| 166 |
learning_rate=5e-5,
|
| 167 |
retention_constant=80.0,
|
|
|
|
| 169 |
max_length=256,
|
| 170 |
gradient_accumulation_steps=4
|
| 171 |
) if USE_LM_STUDENT else MockStudentAgent(learning_rate=0.15, forgetting_rate=0.01, seed=seed)
|
| 172 |
+
|
| 173 |
+
# --- FIX 2: REMOVED seed=seed ---
|
| 174 |
+
generator = MockTaskGenerator()
|
| 175 |
|
| 176 |
topics = generator.get_available_topics()
|
| 177 |
all_difficulties = generator.get_available_difficulties()
|
| 178 |
+
difficulties = all_difficulties
|
|
|
|
| 179 |
|
|
|
|
|
|
|
| 180 |
hard_eval_tasks = []
|
| 181 |
eval_difficulty = 'expert' if 'expert' in all_difficulties else 'hard'
|
| 182 |
for topic in topics:
|
| 183 |
for _ in range(5):
|
| 184 |
hard_eval_tasks.append(generator.generate_task(topic, eval_difficulty))
|
| 185 |
|
|
|
|
| 186 |
general_eval_tasks = [
|
| 187 |
generator.generate_task(topic, 'medium')
|
| 188 |
for topic in topics
|
| 189 |
+
for _ in range(3)
|
| 190 |
]
|
| 191 |
|
| 192 |
history = {
|
|
|
|
| 199 |
'strategy': 'progressive'
|
| 200 |
}
|
| 201 |
|
|
|
|
|
|
|
| 202 |
questions_per_difficulty = max(1, num_iterations // (len(topics) * len(difficulties)))
|
| 203 |
|
| 204 |
iterator = range(num_iterations)
|
|
|
|
| 206 |
iterator = tqdm(iterator, desc="Progressive Strategy", unit="iter")
|
| 207 |
|
| 208 |
for iteration in iterator:
|
|
|
|
| 209 |
phase = iteration // questions_per_difficulty if questions_per_difficulty > 0 else iteration
|
| 210 |
topic_idx = (phase // len(difficulties)) % len(topics)
|
| 211 |
diff_idx = phase % len(difficulties)
|
|
|
|
| 215 |
|
| 216 |
task = generator.generate_task(topic, difficulty)
|
| 217 |
|
|
|
|
| 218 |
accuracy_before = student.evaluate(hard_eval_tasks)
|
|
|
|
|
|
|
| 219 |
student.learn(task)
|
| 220 |
|
|
|
|
| 221 |
accuracy_after = student.evaluate(hard_eval_tasks)
|
| 222 |
+
general_accuracy = student.evaluate(general_eval_tasks)
|
| 223 |
|
| 224 |
student.advance_time(1.0)
|
| 225 |
|
|
|
|
| 226 |
history['iterations'].append(iteration)
|
| 227 |
history['student_accuracies'].append(general_accuracy)
|
| 228 |
history['difficult_accuracies'].append(accuracy_after)
|
|
|
|
| 236 |
def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
|
| 237 |
"""
|
| 238 |
Strategy 3: RL Teacher Agent learns optimal curriculum.
|
| 239 |
+
"""
|
| 240 |
+
random.seed(seed)
|
| 241 |
+
np.random.seed(seed)
|
| 242 |
|
| 243 |
+
# --- FIX 3: REMOVED seed=seed ---
|
| 244 |
+
generator = MockTaskGenerator()
|
| 245 |
+
|
| 246 |
+
teacher = TeacherAgent(exploration_bonus=2.0, task_generator=generator)
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
student = LMStudentAgent(
|
| 249 |
learning_rate=5e-5,
|
| 250 |
retention_constant=80.0,
|
|
|
|
| 255 |
|
| 256 |
topics = generator.get_available_topics()
|
| 257 |
|
|
|
|
| 258 |
eval_tasks = [
|
| 259 |
generator.generate_task(topic, 'medium')
|
| 260 |
for topic in topics
|
| 261 |
for _ in range(3)
|
| 262 |
]
|
| 263 |
|
|
|
|
| 264 |
all_difficulties = generator.get_available_difficulties()
|
| 265 |
eval_difficulty = 'expert' if 'expert' in all_difficulties else 'hard'
|
| 266 |
hard_eval_tasks = [
|
|
|
|
| 269 |
for _ in range(5)
|
| 270 |
]
|
| 271 |
|
|
|
|
| 272 |
history = {
|
| 273 |
'iterations': [],
|
| 274 |
'student_accuracies': [],
|
|
|
|
| 286 |
iterator = tqdm(iterator, desc="Teacher Strategy", unit="iter")
|
| 287 |
|
| 288 |
for iteration in iterator:
|
|
|
|
| 289 |
student_state = student.get_state()
|
|
|
|
|
|
|
| 290 |
action = teacher.select_action(student_state)
|
| 291 |
|
|
|
|
| 292 |
if action.is_review:
|
| 293 |
task = generator.generate_task(action.topic, 'medium')
|
| 294 |
else:
|
| 295 |
task = generator.generate_task(action.topic, action.difficulty)
|
| 296 |
|
|
|
|
| 297 |
accuracy_before = student.evaluate(eval_tasks)
|
| 298 |
difficult_acc_before = student.evaluate(hard_eval_tasks)
|
| 299 |
|
|
|
|
| 300 |
student.learn(task)
|
| 301 |
|
|
|
|
| 302 |
accuracy_after = student.evaluate(eval_tasks)
|
| 303 |
difficult_acc_after = student.evaluate(hard_eval_tasks)
|
| 304 |
|
|
|
|
| 305 |
reward = compute_reward(
|
| 306 |
accuracy_before,
|
| 307 |
accuracy_after,
|
|
|
|
| 309 |
action.is_review
|
| 310 |
)
|
| 311 |
|
|
|
|
| 312 |
teacher.update(action, reward)
|
|
|
|
|
|
|
| 313 |
student.advance_time(1.0)
|
| 314 |
|
|
|
|
| 315 |
history['iterations'].append(iteration)
|
| 316 |
history['student_accuracies'].append(accuracy_after)
|
| 317 |
history['difficult_accuracies'].append(difficult_acc_after)
|
|
|
|
| 327 |
def plot_comparison(histories: Dict[str, Dict], save_path: str = 'teacher_agent_dev/comparison_all_strategies.png'):
|
| 328 |
"""
|
| 329 |
Create comprehensive comparison plots of all three strategies.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
"""
|
| 331 |
import matplotlib.pyplot as plt
|
| 332 |
|
| 333 |
+
# Ensure directory exists
|
| 334 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
| 335 |
+
|
| 336 |
fig, axes = plt.subplots(4, 1, figsize=(16, 14))
|
| 337 |
|
|
|
|
| 338 |
colors = {
|
| 339 |
'Random': '#FF6B6B', # Red
|
| 340 |
'Progressive': '#4ECDC4', # Teal
|
| 341 |
+
'Teacher': '#2ECC71' # Green
|
| 342 |
}
|
| 343 |
|
| 344 |
line_styles = {
|
| 345 |
+
'Random': '--',
|
| 346 |
+
'Progressive': '-.',
|
| 347 |
+
'Teacher': '-'
|
| 348 |
}
|
| 349 |
|
| 350 |
line_widths = {
|
| 351 |
'Random': 2.0,
|
| 352 |
'Progressive': 2.0,
|
| 353 |
+
'Teacher': 3.5
|
| 354 |
}
|
| 355 |
|
| 356 |
+
# 1. Plot 1: General Accuracy
|
| 357 |
ax = axes[0]
|
|
|
|
|
|
|
| 358 |
for name, history in histories.items():
|
| 359 |
iterations = history['iterations']
|
| 360 |
accuracies = history['student_accuracies']
|
| 361 |
|
| 362 |
+
if len(accuracies) > 50:
|
| 363 |
+
# Smooth curves
|
| 364 |
+
window = 10
|
|
|
|
| 365 |
smoothed = np.convolve(accuracies, np.ones(window)/window, mode='same')
|
| 366 |
ax.plot(iterations, smoothed,
|
| 367 |
+
label=name,
|
| 368 |
+
color=colors[name],
|
| 369 |
+
linestyle=line_styles[name],
|
| 370 |
+
linewidth=line_widths[name],
|
| 371 |
+
alpha=0.9)
|
|
|
|
| 372 |
else:
|
| 373 |
+
ax.plot(iterations, accuracies,
|
| 374 |
+
label=name,
|
| 375 |
+
color=colors[name],
|
| 376 |
+
linestyle=line_styles[name],
|
| 377 |
+
linewidth=line_widths[name])
|
| 378 |
+
|
| 379 |
+
ax.set_xlabel('Training Iteration')
|
| 380 |
+
ax.set_ylabel('General Accuracy')
|
| 381 |
+
ax.set_title('Learning Curves')
|
| 382 |
+
ax.legend(loc='lower right')
|
| 383 |
+
ax.grid(True, alpha=0.3)
|
| 384 |
+
ax.set_ylim([0.0, 1.0])
|
| 385 |
+
|
| 386 |
+
# 2. Plot 2: Difficult Question Accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
ax = axes[1]
|
|
|
|
| 388 |
for name, history in histories.items():
|
| 389 |
iterations = history['iterations']
|
| 390 |
difficult_accuracies = history['difficult_accuracies']
|
| 391 |
|
| 392 |
+
if len(difficult_accuracies) > 50:
|
| 393 |
+
window = 10
|
|
|
|
| 394 |
smoothed = np.convolve(difficult_accuracies, np.ones(window)/window, mode='same')
|
| 395 |
ax.plot(iterations, smoothed,
|
| 396 |
+
label=name,
|
| 397 |
+
color=colors[name],
|
| 398 |
+
linestyle=line_styles[name],
|
| 399 |
+
linewidth=line_widths[name])
|
|
|
|
|
|
|
| 400 |
else:
|
| 401 |
+
ax.plot(iterations, difficult_accuracies,
|
| 402 |
+
label=name,
|
| 403 |
+
color=colors[name],
|
| 404 |
+
linestyle=line_styles[name],
|
| 405 |
+
linewidth=line_widths[name])
|
| 406 |
+
|
| 407 |
+
ax.set_xlabel('Training Iteration')
|
| 408 |
+
ax.set_ylabel('Accuracy on Hard Questions')
|
| 409 |
+
ax.set_title('Performance on Difficult Content')
|
| 410 |
+
ax.legend(loc='lower right')
|
| 411 |
+
ax.grid(True, alpha=0.3)
|
| 412 |
+
ax.set_ylim([0.0, 1.0])
|
| 413 |
+
|
| 414 |
+
# 3. Plot 3: Topic Coverage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
ax = axes[2]
|
|
|
|
|
|
|
| 416 |
for name, history in histories.items():
|
| 417 |
iterations = history['iterations']
|
| 418 |
topics_seen = history['topics']
|
| 419 |
|
|
|
|
| 420 |
unique_topics = []
|
| 421 |
seen_so_far = set()
|
|
|
|
| 422 |
for topic in topics_seen:
|
| 423 |
seen_so_far.add(topic)
|
| 424 |
unique_topics.append(len(seen_so_far))
|
| 425 |
|
| 426 |
+
ax.plot(iterations, unique_topics,
|
| 427 |
+
label=name,
|
| 428 |
+
color=colors[name],
|
| 429 |
+
linestyle=line_styles[name],
|
| 430 |
+
linewidth=line_widths[name])
|
| 431 |
+
|
| 432 |
+
ax.set_xlabel('Training Iteration')
|
| 433 |
+
ax.set_ylabel('Unique Topics Seen')
|
| 434 |
+
ax.set_title('Curriculum Diversity')
|
| 435 |
+
ax.legend(loc='lower right')
|
| 436 |
+
ax.grid(True, alpha=0.3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
+
# 4. Plot 4: Learning Efficiency
|
| 439 |
+
ax = axes[3]
|
| 440 |
target_acc = 0.75
|
| 441 |
strategy_stats = {}
|
| 442 |
|
|
|
|
| 444 |
difficult_accuracies = history['difficult_accuracies']
|
| 445 |
iterations = history['iterations']
|
| 446 |
|
|
|
|
| 447 |
reached_target = False
|
| 448 |
target_iteration = len(iterations) - 1
|
| 449 |
|
|
|
|
| 459 |
'final_acc': difficult_accuracies[-1]
|
| 460 |
}
|
| 461 |
|
|
|
|
| 462 |
names = list(strategy_stats.keys())
|
| 463 |
iterations_to_target = [
|
| 464 |
strategy_stats[n]['iteration'] if strategy_stats[n]['reached'] else len(histories[n]['iterations'])
|
|
|
|
| 469 |
x = np.arange(len(names))
|
| 470 |
width = 0.35
|
| 471 |
|
| 472 |
+
ax.bar(x - width/2, iterations_to_target, width, label='Iterations to 75% on Hard',
|
| 473 |
+
color=[colors[n] for n in names], alpha=0.7)
|
| 474 |
+
ax.bar(x + width/2, [acc * max(iterations_to_target) for acc in final_accs], width,
|
| 475 |
+
label='Final Hard Accuracy (scaled)',
|
| 476 |
+
color=[colors[n] for n in names], alpha=0.5)
|
| 477 |
|
| 478 |
+
ax.set_title('Learning Efficiency')
|
|
|
|
|
|
|
|
|
|
| 479 |
ax.set_xticks(x)
|
| 480 |
ax.set_xticklabels(names)
|
| 481 |
+
ax.legend()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
| 483 |
plt.tight_layout()
|
| 484 |
+
plt.savefig(save_path, dpi=150)
|
| 485 |
print(f"\n✅ Saved comparison plot to {save_path}")
|
| 486 |
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
|
| 489 |
if __name__ == "__main__":
|
| 490 |
import argparse
|
| 491 |
import time
|
| 492 |
|
| 493 |
+
parser = argparse.ArgumentParser()
|
| 494 |
+
parser.add_argument('--seed', type=int, default=None)
|
| 495 |
+
parser.add_argument('--iterations', type=int, default=500)
|
| 496 |
+
parser.add_argument('--deterministic', action='store_true')
|
| 497 |
+
parser.add_argument('--runs', type=int, default=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
|
| 499 |
args = parser.parse_args()
|
| 500 |
|
|
|
|
| 501 |
if args.deterministic:
|
| 502 |
seed = 42
|
| 503 |
+
print("⚠️ Using deterministic mode (seed=42)")
|
| 504 |
elif args.seed is not None:
|
| 505 |
seed = args.seed
|
|
|
|
| 506 |
else:
|
| 507 |
+
seed = int(time.time()) % 10000
|
| 508 |
+
|
| 509 |
+
print(f"Using seed: {seed}")
|
| 510 |
|
| 511 |
num_iterations = args.iterations
|
| 512 |
|
| 513 |
+
# Run strategies
|
| 514 |
+
print("Training Random Strategy...")
|
| 515 |
+
history_random = train_strategy_random(num_iterations=num_iterations, seed=seed)
|
| 516 |
+
|
| 517 |
+
print("\nTraining Progressive Strategy...")
|
| 518 |
+
history_progressive = train_strategy_progressive(num_iterations=num_iterations, seed=seed)
|
| 519 |
+
|
| 520 |
+
print("\nTraining Teacher Strategy...")
|
| 521 |
+
history_teacher = train_strategy_teacher(num_iterations=num_iterations, seed=seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
|
|
|
|
|
|
| 523 |
histories = {
|
| 524 |
'Random': history_random,
|
| 525 |
'Progressive': history_progressive,
|
| 526 |
'Teacher': history_teacher
|
| 527 |
}
|
| 528 |
|
| 529 |
+
plot_comparison(histories, save_path='teacher_agent_dev/comparison_all_strategies.png')
|
| 530 |
+
print("\n✅ Comparison complete!")
|
|
|
|
|
|
|
|
|
|
|
|