Spaces:
Paused
Paused
Cornelius
commited on
Commit
·
85ce009
1
Parent(s):
c775d45
Fix GPU error - default to CPU and enhance GPU detection
Browse files- app.py +39 -20
- teacher_agent_dev/compare_strategies.py +16 -2
app.py
CHANGED
|
@@ -3,17 +3,13 @@ Gradio app for MentorFlow - Teacher-Student RL System
|
|
| 3 |
Deployed on Hugging Face Spaces with GPU support
|
| 4 |
"""
|
| 5 |
|
| 6 |
-
import gradio as gr
|
| 7 |
import sys
|
| 8 |
import os
|
| 9 |
import subprocess
|
| 10 |
from pathlib import Path
|
| 11 |
|
| 12 |
-
# Monkey-patch to fix Gradio
|
| 13 |
# Prevents TypeError: argument of type 'bool' is not iterable
|
| 14 |
-
import sys
|
| 15 |
-
|
| 16 |
-
# Patch BEFORE importing gradio to ensure it takes effect
|
| 17 |
def _patch_gradio_schema_bug():
|
| 18 |
"""Patch Gradio's buggy schema generation."""
|
| 19 |
try:
|
|
@@ -25,12 +21,10 @@ def _patch_gradio_schema_bug():
|
|
| 25 |
|
| 26 |
def _patched_get_type(schema):
|
| 27 |
"""Handle bool schemas that cause the bug."""
|
| 28 |
-
# Bug fix: schema is sometimes a bool
|
| 29 |
if isinstance(schema, bool):
|
| 30 |
return "bool"
|
| 31 |
if schema is None:
|
| 32 |
return "Any"
|
| 33 |
-
# Must be dict to check membership
|
| 34 |
if not isinstance(schema, dict):
|
| 35 |
return "Any"
|
| 36 |
try:
|
|
@@ -42,7 +36,7 @@ def _patch_gradio_schema_bug():
|
|
| 42 |
|
| 43 |
gradio_client_utils.get_type = _patched_get_type
|
| 44 |
|
| 45 |
-
#
|
| 46 |
if hasattr(gradio_client_utils, '_json_schema_to_python_type'):
|
| 47 |
_original_json_to_type = gradio_client_utils._json_schema_to_python_type
|
| 48 |
|
|
@@ -51,18 +45,20 @@ def _patch_gradio_schema_bug():
|
|
| 51 |
try:
|
| 52 |
return _original_json_to_type(schema, defs)
|
| 53 |
except (TypeError, AttributeError) as e:
|
| 54 |
-
if "is not iterable" in str(e)
|
| 55 |
return "Any"
|
| 56 |
raise
|
| 57 |
|
| 58 |
gradio_client_utils._json_schema_to_python_type = _patched_json_to_type
|
| 59 |
-
|
| 60 |
except (ImportError, AttributeError):
|
| 61 |
pass
|
| 62 |
|
| 63 |
-
# Apply patch
|
| 64 |
_patch_gradio_schema_bug()
|
| 65 |
|
|
|
|
|
|
|
|
|
|
| 66 |
# Add project paths
|
| 67 |
sys.path.insert(0, str(Path(__file__).parent))
|
| 68 |
sys.path.insert(0, str(Path(__file__).parent / "teacher_agent_dev"))
|
|
@@ -80,19 +76,32 @@ def run_comparison(iterations: int, seed: int, use_deterministic: bool, device:
|
|
| 80 |
"""
|
| 81 |
|
| 82 |
# Set device environment variable for subprocess
|
| 83 |
-
#
|
| 84 |
if device == "cuda":
|
| 85 |
try:
|
| 86 |
import torch
|
| 87 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
device = "cpu"
|
| 89 |
except ImportError:
|
|
|
|
| 90 |
device = "cpu"
|
| 91 |
-
except Exception:
|
|
|
|
| 92 |
device = "cpu"
|
| 93 |
|
| 94 |
# Set environment variable for subprocess to pick up
|
| 95 |
os.environ["CUDA_DEVICE"] = device
|
|
|
|
| 96 |
|
| 97 |
# Prepare command
|
| 98 |
cmd = [
|
|
@@ -163,11 +172,21 @@ def check_gpu():
|
|
| 163 |
try:
|
| 164 |
import torch
|
| 165 |
if torch.cuda.is_available():
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
else:
|
|
|
|
|
|
|
|
|
|
| 168 |
return "⚠️ No GPU available, using CPU"
|
| 169 |
-
except:
|
| 170 |
-
return "⚠️
|
|
|
|
|
|
|
| 171 |
|
| 172 |
|
| 173 |
# Create Gradio interface
|
|
@@ -221,10 +240,10 @@ with gr.Blocks(title="MentorFlow - Strategy Comparison") as demo:
|
|
| 221 |
)
|
| 222 |
|
| 223 |
device = gr.Radio(
|
| 224 |
-
choices=["
|
| 225 |
-
value="
|
| 226 |
label="Device",
|
| 227 |
-
info="
|
| 228 |
)
|
| 229 |
|
| 230 |
with gr.Column():
|
|
|
|
| 3 |
Deployed on Hugging Face Spaces with GPU support
|
| 4 |
"""
|
| 5 |
|
|
|
|
| 6 |
import sys
|
| 7 |
import os
|
| 8 |
import subprocess
|
| 9 |
from pathlib import Path
|
| 10 |
|
| 11 |
+
# Monkey-patch to fix Gradio schema generation bug BEFORE importing gradio
|
| 12 |
# Prevents TypeError: argument of type 'bool' is not iterable
|
|
|
|
|
|
|
|
|
|
| 13 |
def _patch_gradio_schema_bug():
|
| 14 |
"""Patch Gradio's buggy schema generation."""
|
| 15 |
try:
|
|
|
|
| 21 |
|
| 22 |
def _patched_get_type(schema):
|
| 23 |
"""Handle bool schemas that cause the bug."""
|
|
|
|
| 24 |
if isinstance(schema, bool):
|
| 25 |
return "bool"
|
| 26 |
if schema is None:
|
| 27 |
return "Any"
|
|
|
|
| 28 |
if not isinstance(schema, dict):
|
| 29 |
return "Any"
|
| 30 |
try:
|
|
|
|
| 36 |
|
| 37 |
gradio_client_utils.get_type = _patched_get_type
|
| 38 |
|
| 39 |
+
# Patch the wrapper function too
|
| 40 |
if hasattr(gradio_client_utils, '_json_schema_to_python_type'):
|
| 41 |
_original_json_to_type = gradio_client_utils._json_schema_to_python_type
|
| 42 |
|
|
|
|
| 45 |
try:
|
| 46 |
return _original_json_to_type(schema, defs)
|
| 47 |
except (TypeError, AttributeError) as e:
|
| 48 |
+
if "is not iterable" in str(e):
|
| 49 |
return "Any"
|
| 50 |
raise
|
| 51 |
|
| 52 |
gradio_client_utils._json_schema_to_python_type = _patched_json_to_type
|
|
|
|
| 53 |
except (ImportError, AttributeError):
|
| 54 |
pass
|
| 55 |
|
| 56 |
+
# Apply patch BEFORE importing gradio
|
| 57 |
_patch_gradio_schema_bug()
|
| 58 |
|
| 59 |
+
# Now import gradio (patch will be in effect)
|
| 60 |
+
import gradio as gr
|
| 61 |
+
|
| 62 |
# Add project paths
|
| 63 |
sys.path.insert(0, str(Path(__file__).parent))
|
| 64 |
sys.path.insert(0, str(Path(__file__).parent / "teacher_agent_dev"))
|
|
|
|
| 76 |
"""
|
| 77 |
|
| 78 |
# Set device environment variable for subprocess
|
| 79 |
+
# On Hugging Face Spaces, check GPU availability more carefully
|
| 80 |
if device == "cuda":
|
| 81 |
try:
|
| 82 |
import torch
|
| 83 |
+
# Check if CUDA is available
|
| 84 |
+
if torch.cuda.is_available():
|
| 85 |
+
try:
|
| 86 |
+
# Try to get device name to verify GPU works
|
| 87 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 88 |
+
print(f"✅ GPU available: {gpu_name}")
|
| 89 |
+
except Exception as e:
|
| 90 |
+
print(f"⚠️ GPU detection failed: {e}, falling back to CPU")
|
| 91 |
+
device = "cpu"
|
| 92 |
+
else:
|
| 93 |
+
print("⚠️ CUDA not available, using CPU")
|
| 94 |
device = "cpu"
|
| 95 |
except ImportError:
|
| 96 |
+
print("⚠️ PyTorch not available, using CPU")
|
| 97 |
device = "cpu"
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"⚠️ GPU check error: {e}, using CPU")
|
| 100 |
device = "cpu"
|
| 101 |
|
| 102 |
# Set environment variable for subprocess to pick up
|
| 103 |
os.environ["CUDA_DEVICE"] = device
|
| 104 |
+
print(f"🔧 Using device: {device}")
|
| 105 |
|
| 106 |
# Prepare command
|
| 107 |
cmd = [
|
|
|
|
| 172 |
try:
|
| 173 |
import torch
|
| 174 |
if torch.cuda.is_available():
|
| 175 |
+
try:
|
| 176 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 177 |
+
gpu_count = torch.cuda.device_count()
|
| 178 |
+
return f"✅ GPU Available: {gpu_name} (Count: {gpu_count})"
|
| 179 |
+
except Exception as e:
|
| 180 |
+
return f"⚠️ GPU detected but error accessing: {str(e)}"
|
| 181 |
else:
|
| 182 |
+
# Check if we're on Hugging Face Spaces
|
| 183 |
+
if os.getenv("SPACE_ID"):
|
| 184 |
+
return "⚠️ No GPU available on this Space. Please upgrade to GPU tier."
|
| 185 |
return "⚠️ No GPU available, using CPU"
|
| 186 |
+
except ImportError:
|
| 187 |
+
return "⚠️ PyTorch not installed"
|
| 188 |
+
except Exception as e:
|
| 189 |
+
return f"⚠️ Could not check GPU status: {str(e)}"
|
| 190 |
|
| 191 |
|
| 192 |
# Create Gradio interface
|
|
|
|
| 240 |
)
|
| 241 |
|
| 242 |
device = gr.Radio(
|
| 243 |
+
choices=["cpu", "cuda"],
|
| 244 |
+
value="cpu", # Default to CPU for reliability on HF Spaces
|
| 245 |
label="Device",
|
| 246 |
+
info="CPU (recommended) or CUDA/GPU if available on your Space"
|
| 247 |
)
|
| 248 |
|
| 249 |
with gr.Column():
|
teacher_agent_dev/compare_strategies.py
CHANGED
|
@@ -90,11 +90,25 @@ def train_strategy_random(num_iterations: int = 500, seed: int = 42, target_accu
|
|
| 90 |
if device == "cuda":
|
| 91 |
try:
|
| 92 |
import torch
|
| 93 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
device = "cpu"
|
| 95 |
print("⚠️ CUDA not available, using CPU")
|
| 96 |
-
except:
|
|
|
|
|
|
|
|
|
|
| 97 |
device = "cpu"
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
student = LMStudentAgent(
|
| 100 |
learning_rate=5e-5, # LM fine-tuning learning rate
|
|
|
|
| 90 |
if device == "cuda":
|
| 91 |
try:
|
| 92 |
import torch
|
| 93 |
+
if torch.cuda.is_available():
|
| 94 |
+
try:
|
| 95 |
+
# Verify GPU actually works
|
| 96 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 97 |
+
print(f"✅ Using GPU: {gpu_name}")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"⚠️ GPU access failed: {e}, using CPU")
|
| 100 |
+
device = "cpu"
|
| 101 |
+
else:
|
| 102 |
device = "cpu"
|
| 103 |
print("⚠️ CUDA not available, using CPU")
|
| 104 |
+
except ImportError:
|
| 105 |
+
device = "cpu"
|
| 106 |
+
print("⚠️ PyTorch not available, using CPU")
|
| 107 |
+
except Exception as e:
|
| 108 |
device = "cpu"
|
| 109 |
+
print(f"⚠️ GPU check error: {e}, using CPU")
|
| 110 |
+
|
| 111 |
+
print(f"🔧 LM Student device: {device}")
|
| 112 |
|
| 113 |
student = LMStudentAgent(
|
| 114 |
learning_rate=5e-5, # LM fine-tuning learning rate
|