File size: 8,457 Bytes
a52f96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""Unit tests for Teacher Agent system."""

import sys
from pathlib import Path

# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))

from mock_student import MockStudentAgent
from mock_task_generator import MockTaskGenerator
from teacher_agent import TeacherAgent
from interfaces import TeacherAction


def test_mock_student_learning():
    """Test that mock student learns."""
    print("Testing student learning...", end=" ")
    
    student = MockStudentAgent(learning_rate=0.15, forgetting_rate=0.05)
    generator = MockTaskGenerator()
    
    # Test learning
    topic = 'history'
    tasks = [generator.generate_task(topic, 'easy') for _ in range(20)]
    
    accuracies = []
    for task in tasks:
        eval_tasks = [generator.generate_task(topic, 'easy') for _ in range(10)]
        acc = student.evaluate(eval_tasks)
        accuracies.append(acc)
        student.learn(task)
    
    # Student should improve
    improvement = accuracies[-1] - accuracies[0]
    assert improvement > 0.1, f"Student should improve! Improvement: {improvement:.3f}"
    
    print("βœ… PASSED")
    print(f"   Initial accuracy: {accuracies[0]:.3f}")
    print(f"   Final accuracy: {accuracies[-1]:.3f}")
    print(f"   Improvement: {improvement:.3f}")


def test_mock_student_forgetting():
    """Test that mock student forgets over time."""
    print("Testing student forgetting...", end=" ")
    
    student = MockStudentAgent(learning_rate=0.15, forgetting_rate=0.1)
    generator = MockTaskGenerator()
    
    # Train on one topic
    topic = 'science'
    for _ in range(30):
        task = generator.generate_task(topic, 'easy')
        student.learn(task)
    
    # Measure accuracy
    eval_tasks = [generator.generate_task(topic, 'easy') for _ in range(10)]
    acc_before = student.evaluate(eval_tasks)
    
    # Time passes without practice
    student.advance_time(50.0)
    
    acc_after = student.evaluate(eval_tasks)
    
    # Student should forget
    assert acc_after < acc_before - 0.05, f"Student should forget! Before: {acc_before:.3f}, After: {acc_after:.3f}"
    
    print("βœ… PASSED")
    print(f"   Accuracy before forgetting: {acc_before:.3f}")
    print(f"   Accuracy after 50 time units: {acc_after:.3f}")
    print(f"   Forgetting: {acc_before - acc_after:.3f}")


def test_mock_student_initial_accuracy():
    """Test that student starts at ~25% accuracy (random guessing)."""
    print("Testing initial student accuracy...", end=" ")
    
    student = MockStudentAgent()
    generator = MockTaskGenerator()
    
    # Evaluate on many tasks
    eval_tasks = [generator.generate_task('history', 'easy') for _ in range(100)]
    initial_acc = student.evaluate(eval_tasks)
    
    # Should be around 25% (random guessing on 4-choice MCQ)
    assert 0.15 < initial_acc < 0.35, f"Initial accuracy should be ~25%! Got: {initial_acc:.3f}"
    
    print("βœ… PASSED")
    print(f"   Initial accuracy: {initial_acc:.3f} (~25% expected)")


def test_teacher_exploration():
    """Test that teacher explores all actions."""
    print("Testing teacher exploration...", end=" ")
    
    teacher = TeacherAgent(exploration_bonus=5.0)  # High exploration
    from mock_student import MockStudentAgent
    from interfaces import StudentState
    
    # Create minimal student state
    student = MockStudentAgent()
    
    actions_tried = set()
    for _ in range(100):
        student_state = student.get_state()
        action = teacher.select_action(student_state)
        actions_tried.add((action.topic, action.difficulty, action.is_review))
        teacher.update(action, 0.0)  # Neutral reward
    
    # Teacher should explore many actions (now has 15 topics Γ— 7 difficulties Γ— 2 = 210 actions)
    expected_actions = 15 * 7 * 2  # topics Γ— difficulties Γ— review options
    assert len(actions_tried) > 20, f"Teacher should explore many actions! Only tried: {len(actions_tried)}"
    
    print("βœ… PASSED")
    print(f"   Unique actions tried: {len(actions_tried)}/{expected_actions}")


def test_teacher_exploitation():
    """Test that teacher exploits good actions."""
    print("Testing teacher exploitation...", end=" ")
    
    teacher = TeacherAgent(exploration_bonus=0.1)  # Very low exploration
    from mock_student import MockStudentAgent
    
    student = MockStudentAgent()
    
    # Manually set one action to be very good
    best_action = TeacherAction(topic='history', difficulty='easy', is_review=False)
    best_action_idx = teacher._action_to_index(best_action)
    
    # First, try all actions once (cold start)
    for i in range(teacher.num_actions):
        test_action = teacher._index_to_action(i)
        if i == best_action_idx:
            teacher.update(test_action, 100.0)  # Very high reward
        else:
            teacher.update(test_action, 0.0)  # Low reward
    
    # Now teacher should prefer the best action
    selections = []
    for _ in range(50):  # More samples for better statistics
        student_state = student.get_state()
        action = teacher.select_action(student_state)
        idx = teacher._action_to_index(action)
        selections.append(idx == best_action_idx)
    
    # Should select best action frequently
    exploit_rate = sum(selections) / len(selections)
    assert exploit_rate > 0.3, f"Teacher should exploit good actions! Exploit rate: {exploit_rate:.2f}"
    
    print("βœ… PASSED")
    print(f"   Best action selection rate: {exploit_rate:.2f}")


def test_teacher_action_encoding():
    """Test that action encoding/decoding works correctly."""
    print("Testing action encoding/decoding...", end=" ")
    
    teacher = TeacherAgent()
    
    # Test all actions
    for idx in range(teacher.num_actions):
        action1 = teacher._index_to_action(idx)
        idx2 = teacher._action_to_index(action1)
        action2 = teacher._index_to_action(idx2)
        
        assert idx == idx2, f"Encoding mismatch! {idx} != {idx2}"
        assert action1.topic == action2.topic, "Topic mismatch"
        assert action1.difficulty == action2.difficulty, "Difficulty mismatch"
        assert action1.is_review == action2.is_review, "Review flag mismatch"
    
    print("βœ… PASSED")
    print(f"   Tested {teacher.num_actions} actions")


def test_task_generator():
    """Test that task generator creates valid tasks."""
    print("Testing task generator...", end=" ")
    
    generator = MockTaskGenerator()
    
    topics = generator.get_available_topics()
    difficulties = generator.get_available_difficulties()
    
    # Check that we have topics and difficulties (exact count may vary after expansion)
    assert len(topics) >= 5, f"Should have at least 5 topics, got {len(topics)}"
    assert len(difficulties) >= 3, f"Should have at least 3 difficulties, got {len(difficulties)}"
    
    # Generate tasks for all combinations
    for topic in topics:
        for difficulty in difficulties:
            task = generator.generate_task(topic, difficulty)
            assert len(task.choices) == 4, "Should have 4 choices"
            assert 0 <= task.answer < 4, "Answer should be valid index"
            assert task.topic == topic, "Topic should match"
            assert task.difficulty == difficulty, "Difficulty should match"
    
    print("βœ… PASSED")
    print(f"   Generated tasks for {len(topics)} topics Γ— {len(difficulties)} difficulties")


def run_all_tests():
    """Run all tests."""
    print("=" * 70)
    print("RUNNING TESTS")
    print("=" * 70)
    print()
    
    tests = [
        test_task_generator,
        test_mock_student_initial_accuracy,
        test_mock_student_learning,
        test_mock_student_forgetting,
        test_teacher_action_encoding,
        test_teacher_exploration,
        test_teacher_exploitation,
    ]
    
    passed = 0
    failed = 0
    
    for test_func in tests:
        try:
            test_func()
            passed += 1
        except AssertionError as e:
            print(f"❌ FAILED: {e}")
            failed += 1
        except Exception as e:
            print(f"❌ ERROR: {e}")
            import traceback
            traceback.print_exc()
            failed += 1
        print()
    
    print("=" * 70)
    print(f"TESTS COMPLETE: {passed} passed, {failed} failed")
    print("=" * 70)
    
    return failed == 0


if __name__ == "__main__":
    success = run_all_tests()
    sys.exit(0 if success else 1)