File size: 12,331 Bytes
a52f96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""Enhanced mock student agent with PPO-like features: transfer learning, exponential learning curves."""

import random
from typing import Dict, List, Set, Optional
import numpy as np
from interfaces import Task, StudentState, StudentAgentInterface


class MockStudentAgent(StudentAgentInterface):
    """
    Enhanced mock student with PPO-like features:
    - Learning: improves with practice (exponential when guided, linear when random)
    - Forgetting: Ebbinghaus curve
    - Per-topic skill tracking
    - Transfer learning: skills in related topics help each other
    - Feature representations: abstract concepts that transfer across topics
    - Exponential learning curve when teacher-guided (coherent curriculum)
    - Stochastic/erratic learning when random
    """
    
    def __init__(
        self, 
        learning_rate: float = 0.15, 
        forgetting_rate: float = 0.01,  # Reduced for long training
        transfer_strength: float = 0.3,  # How much skills transfer between topics
        seed: int = 42,
        curriculum_coherence: Optional[float] = None  # Track if teacher-guided
    ):
        """
        Initialize enhanced mock student.
        
        Args:
            learning_rate: Base learning rate (0-1)
            forgetting_rate: How fast retention decays
            transfer_strength: How much skills transfer (0-1)
            seed: Random seed
            curriculum_coherence: Track if following coherent curriculum (auto-detected)
        """
        self.learning_rate = learning_rate
        self.forgetting_rate = forgetting_rate
        self.transfer_strength = transfer_strength
        self.rng = random.Random(seed)
        
        # Track per-topic base skill (0.0 to 1.0)
        self.topic_skills: Dict[str, float] = {}
        
        # PPO-like: Feature representations (abstract concepts that transfer)
        # Groups of related topics share feature representations
        self.feature_representations: Dict[str, Set[str]] = self._build_feature_groups()
        
        # Track history
        self.topic_attempts: Dict[str, int] = {}
        self.last_practice_time: Dict[str, float] = {}
        
        # Time tracking for forgetting simulation
        self.current_time = 0.0
        self.total_timesteps = 0
        
        # Track curriculum coherence (exponential learning vs stochastic)
        self.curriculum_coherence = curriculum_coherence
        self.recent_topics: List[str] = []  # Track recent topic sequence
        self.recent_topics_window = 5
        
        # Expanded difficulty learning factors (all 7 levels)
        self.difficulty_factors = {
            'trivial': 1.2,      # Very easy, learn quickly
            'easy': 1.0,         # Standard easy
            'medium': 0.8,       # Moderate
            'hard': 0.6,         # Challenging
            'expert': 0.4,       # Very hard (multi-step)
            'master': 0.25,      # Extremely hard
            'grandmaster': 0.15  # Maximum difficulty
        }
        
        # Multi-step penalty: harder difficulties need more practice
        self.multi_step_penalty = {
            'trivial': 0.0,
            'easy': 0.0,
            'medium': 0.1,
            'hard': 0.2,
            'expert': 0.3,
            'master': 0.4,
            'grandmaster': 0.5
        }
    
    def _build_feature_groups(self) -> Dict[str, Set[str]]:
        """Build groups of related topics for transfer learning."""
        # Group related topics that share underlying concepts
        return {
            'stem_concepts': {'mathematics', 'programming', 'science', 'physics', 'chemistry'},
            'humanities_concepts': {'history', 'literature', 'philosophy', 'art'},
            'social_concepts': {'current_events', 'economics', 'psychology', 'geography'},
            'abstract_reasoning': {'mathematics', 'programming', 'philosophy'},
            'memorization': {'history', 'geography', 'biology', 'chemistry'}
        }
    
    def _get_transfer_boost(self, topic: str) -> float:
        """
        Calculate transfer learning boost from related topics.
        
        Returns:
            Multiplier for learning rate based on related topic skills
        """
        boost = 0.0
        
        # Find which feature groups this topic belongs to
        for feature_name, topics in self.feature_representations.items():
            if topic in topics:
                # Get average skill from related topics
                related_skills = [
                    self.topic_skills.get(t, 0.0)
                    for t in topics
                    if t != topic and t in self.topic_skills
                ]
                if related_skills:
                    avg_related_skill = np.mean(related_skills)
                    # Transfer boost proportional to related skills
                    boost += self.transfer_strength * avg_related_skill * 0.5
        
        return min(boost, 0.5)  # Cap at 50% boost
    
    def _get_curriculum_coherence(self) -> float:
        """
        Detect if student is following coherent curriculum (teacher-guided).
        
        Returns:
            Coherence score (0.0 = random, 1.0 = very coherent)
        """
        if len(self.recent_topics) < 3:
            return 0.5  # Neutral
        
        # Check if topics are related (same feature groups)
        recent_set = set(self.recent_topics[-3:])
        coherence_score = 0.0
        
        for feature_name, topics in self.feature_representations.items():
            if recent_set.issubset(topics) or len(recent_set.intersection(topics)) >= 2:
                coherence_score += 0.3
        
        # Check for progressive difficulty or review patterns
        if len(self.recent_topics) >= 2:
            # If topics repeat (review) or progress logically
            if self.recent_topics[-1] == self.recent_topics[-2]:
                coherence_score += 0.2  # Review pattern
        
        return min(coherence_score, 1.0)
    
    def answer(self, task: Task) -> int:
        """
        Answer a task based on effective skill (accounting for forgetting and transfer).
        
        Returns:
            Index of chosen answer (0-3)
        """
        effective_skill = self._get_effective_skill(task.topic)
        
        # Probability of correct = 0.25 (random) + 0.75 * effective_skill
        prob_correct = 0.25 + 0.75 * effective_skill
        
        if self.rng.random() < prob_correct:
            return task.answer
        else:
            wrong_answers = [i for i in range(4) if i != task.answer]
            return self.rng.choice(wrong_answers)
    
    def learn(self, task: Task) -> bool:
        """
        Learn from a task with PPO-like features.
        
        Features:
        - Transfer learning: Related topics boost learning
        - Exponential learning: Coherent curriculum accelerates learning
        - Multi-step penalty: Harder tasks need more practice
        - Adaptive learning: Learning rate adjusts based on context
        
        Returns:
            Whether answer was correct
        """
        was_correct = (self.answer(task) == task.answer)
        
        topic = task.topic
        difficulty = task.difficulty
        
        # Initialize if new topic
        if topic not in self.topic_skills:
            self.topic_skills[topic] = 0.0
            self.topic_attempts[topic] = 0
            self.last_practice_time[topic] = self.current_time
        
        current_base_skill = self.topic_skills[topic]
        difficulty_factor = self.difficulty_factors.get(difficulty, 0.5)
        
        # PPO-like: Transfer learning boost
        transfer_boost = self._get_transfer_boost(topic)
        
        # PPO-like: Curriculum coherence (exponential learning when guided)
        coherence = self._get_curriculum_coherence()
        curriculum_multiplier = 1.0 + (coherence * 0.5)  # Up to 1.5x with coherent curriculum
        
        # Update recent topics for coherence tracking
        self.recent_topics.append(topic)
        if len(self.recent_topics) > self.recent_topics_window:
            self.recent_topics.pop(0)
        
        # Learning multiplier based on correctness
        if was_correct:
            learning_multiplier = 1.0
        else:
            learning_multiplier = 0.3
        
        # Multi-step penalty for very hard tasks
        steps = self._get_steps_for_difficulty(difficulty)
        step_penalty = 1.0 - (self.multi_step_penalty.get(difficulty, 0.0) * steps)
        
        # Exponential learning when guided, linear when random
        if coherence > 0.6:  # Teacher-guided (coherent)
            # Exponential: faster learning as skills accumulate
            skill_gap = 1.0 - current_base_skill
            exponential_factor = 1.0 + (current_base_skill * 0.5)  # Accelerates with skill
        else:  # Random/progressive (incoherent)
            # Linear: constant learning rate
            skill_gap = 1.0 - current_base_skill
            exponential_factor = 1.0  # No acceleration
        
        skill_increase = (
            self.learning_rate * 
            difficulty_factor * 
            learning_multiplier * 
            skill_gap *
            (1.0 + transfer_boost) *  # Transfer learning
            curriculum_multiplier *  # Curriculum coherence
            step_penalty *  # Multi-step penalty
            exponential_factor  # Exponential vs linear
        )
        
        self.topic_skills[topic] = min(1.0, current_base_skill + skill_increase)
        self.topic_attempts[topic] = self.topic_attempts.get(topic, 0) + 1
        self.last_practice_time[topic] = self.current_time
        self.total_timesteps += 1
        
        return was_correct
    
    def _get_steps_for_difficulty(self, difficulty: str) -> int:
        """Determine number of reasoning steps for a difficulty level."""
        step_map = {
            'trivial': 1,
            'easy': 1,
            'medium': 2,
            'hard': 3,
            'expert': 4,
            'master': 5,
            'grandmaster': 6
        }
        return step_map.get(difficulty, 1)
    
    def _get_effective_skill(self, topic: str) -> float:
        """
        Get effective skill accounting for forgetting (Ebbinghaus curve).
        
        Formula: effective_skill = base_skill * retention
        retention = exp(-forgetting_rate * time_since_practice)
        """
        if topic not in self.topic_skills:
            return 0.0
        
        base_skill = self.topic_skills[topic]
        time_since = self.current_time - self.last_practice_time.get(topic, self.current_time)
        
        # Ebbinghaus forgetting curve
        retention = np.exp(-self.forgetting_rate * time_since)
        
        # Effective skill = base skill reduced by forgetting
        effective_skill = base_skill * retention
        
        return max(0.0, min(1.0, effective_skill))
    
    def evaluate(self, eval_tasks: List[Task]) -> float:
        """
        Evaluate student on a list of tasks.
        
        Returns:
            Accuracy (0.0 to 1.0)
        """
        if not eval_tasks:
            return 0.0
        
        correct = 0
        for task in eval_tasks:
            answer = self.answer(task)
            if answer == task.answer:
                correct += 1
        
        return correct / len(eval_tasks)
    
    def get_state(self) -> StudentState:
        """Get current student state."""
        topic_accuracies = {}
        for topic in self.topic_skills.keys():
            effective_skill = self._get_effective_skill(topic)
            topic_accuracies[topic] = 0.25 + 0.75 * effective_skill
        
        time_since_practice = {}
        for topic in self.last_practice_time:
            time_since_practice[topic] = self.current_time - self.last_practice_time[topic]
        
        return StudentState(
            topic_accuracies=topic_accuracies,
            topic_attempts=self.topic_attempts.copy(),
            time_since_practice=time_since_practice,
            total_timesteps=self.total_timesteps,
            current_time=self.current_time
        )
    
    def advance_time(self, delta: float = 1.0):
        """Advance time for forgetting simulation."""
        self.current_time += delta