File size: 2,620 Bytes
a52f96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Teacher Agent System - Summary

## βœ… System Status: WORKING AND LEARNING

### Files Overview

All files in `teacher_agent_dev/` are **relevant and necessary**:

1. **interfaces.py** - Core data structures (Task, StudentState, TeacherAction) and ABC interfaces
2. **mock_student.py** - Student agent with learning + forgetting
3. **mock_task_generator.py** - Task generator (5 topics Γ— 3 difficulties)
4. **teacher_agent.py** - ⭐ MAIN: UCB bandit RL algorithm
5. **train_teacher.py** - Training loop with baselines
6. **test_teacher.py** - Unit tests (all passing)
7. **visualize.py** - Plotting utilities
8. **verify_teacher_learning.py** - RL verification script
9. **requirements.txt** - Dependencies
10. **README.md** - Documentation
11. **RL_VERIFICATION.md** - RL proof document

### βœ… Teacher Agent is Using RL

**Algorithm**: Upper Confidence Bound (UCB) Multi-Armed Bandit

**How it learns**:
1. Selects action using UCB: `UCB(a) = estimated_reward(a) + exploration_bonus Γ— sqrt(log(total_pulls) / pulls(a))`
2. Receives reward based on student improvement
3. Updates policy: Running average reward for each action
4. Next selection uses updated estimates (exploits good actions)

**Verification Results** (from `verify_teacher_learning.py`):
- βœ… Rewards improve: 1.682 β†’ 2.115 (+0.433)
- βœ… Explores all 30 actions
- βœ… Exploits high-reward actions (prefers `current_events-hard-R`)
- βœ… Student improves: 0.527 β†’ 0.862 accuracy

### Key Features

**Teacher Agent**:
- Uses UCB bandit (classic RL algorithm)
- 30 actions: 5 topics Γ— 3 difficulties Γ— 2 options
- Learns from rewards (policy updates)
- Balances exploration/exploitation

**Student Agent**:
- Learns with practice (learning_rate)
- Forgets over time (Ebbinghaus curve)
- Per-topic skill tracking

**Reward Function**:
- Base: student improvement
- Bonus: harder tasks (+2.0), successful reviews (+1.0)
- Penalty: wasted reviews (-0.5)

### Note on Student State

The teacher currently uses a **non-contextual** bandit (doesn't use `student_state` parameter). This is still valid RL (UCB for multi-armed bandit), but could be enhanced to be **contextual** by using student state in decisions.

### Quick Start

```bash
cd teacher_agent_dev

# Run tests
python test_teacher.py

# Train teacher
python train_teacher.py

# Verify learning
python verify_teacher_learning.py
```

### All Checks Passed βœ…

- βœ… Teacher learns and improves (rewards increase)
- βœ… Teacher explores actions
- βœ… Teacher exploits good actions
- βœ… Student improves significantly
- βœ… All tests pass
- βœ… System is self-contained and functional