Spaces:
Paused
Paused
File size: 2,694 Bytes
a52f96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
# β
Student Agent System - Complete!
## Summary
All components have been successfully created! The student agent system is ready for development and testing.
## Files Created
β
**interfaces.py** - Shared interfaces (matches teacher/task generator teams)
β
**memory_decay.py** - Ebbinghaus forgetting curve model
β
**student_agent.py** - DistilBERT-based student with online learning
β
**student_metrics.py** - Comprehensive metrics tracking
β
**mock_teacher.py** - Dummy teacher for independent testing
β
**mock_task_generator.py** - Dummy task generator for independent testing
β
**test_student.py** - Unit tests for all components
β
**visualize_student.py** - Beautiful visualizations (6 plots)
β
**train_student.py** - Main training script with full integration
β
**requirements.txt** - All dependencies
β
**README.md** - Complete documentation
## Quick Start
```bash
cd student_agent_dev
# Install dependencies
pip install -r requirements.txt
# Run tests
python test_student.py
# Train student
python train_student.py
# Check visualizations
ls student_visualizations/
```
## Key Features Implemented
1. **DistilBERT Integration**
- Online learning (1 task at a time)
- Multiple choice format support
- Gradient accumulation for stability
- Graceful fallback if transformers not available
2. **Memory Decay (Ebbinghaus)**
- Realistic forgetting curves
- Per-topic retention tracking
- Configurable retention constant
3. **Comprehensive Metrics**
- Overall accuracy tracking
- Per-topic learning curves
- Retention analysis
- Sample efficiency metrics
4. **Beautiful Visualizations**
- Learning curve with milestones
- Per-topic curves
- Retention analysis
- Difficulty progression
- Topic distribution
- Sample efficiency
## Integration Ready
The student agent uses the shared `interfaces.py`, so it will integrate seamlessly with:
- Real Teacher Agent (replace `MockTeacherAgent`)
- Real Task Generator (replace `MockTaskGenerator`)
## Next Steps
1. **Install dependencies** if not already installed
2. **Run tests** to verify everything works
3. **Train student** to see learning in action
4. **Review visualizations** to analyze performance
5. **Tune hyperparameters** (learning_rate, retention_constant)
6. **Integrate** with real teacher/task generator when ready
## Note on DistilBERT
The code includes graceful fallback if DistilBERT is not available (uses dummy model for testing). For full functionality:
```bash
pip install torch transformers
```
The student will automatically detect and use DistilBERT if available.
## Status
π **All components complete and ready for use!**
|