Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py (Complete Final Version)
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
|
@@ -40,7 +40,7 @@ NUM_CAR_PART_CLASSES = len(CAR_PART_CLASSES)
|
|
| 40 |
|
| 41 |
# Paths within the Hugging Face Space repository (relative to app.py)
|
| 42 |
CLIP_TEXT_FEATURES_PATH = "./clip_text_features.pt"
|
| 43 |
-
DAMAGE_MODEL_WEIGHTS_PATH = "./
|
| 44 |
PART_MODEL_WEIGHTS_PATH = "./partdetection_yolobest.pt" # Your YOLOv8 part model weights
|
| 45 |
|
| 46 |
# Default Prediction Thresholds (can be overridden by sliders)
|
|
@@ -167,7 +167,6 @@ def classify_image_clip(image_pil):
|
|
| 167 |
traceback.print_exc()
|
| 168 |
return "Error during CLIP processing", {"Error": 1.0}
|
| 169 |
|
| 170 |
-
# --- CORRECTED process_car_image Function ---
|
| 171 |
def process_car_image(image_np_bgr, damage_threshold, part_threshold):
|
| 172 |
"""
|
| 173 |
Runs damage and part segmentation (YOLOv8), calculates overlap, visualizes.
|
|
@@ -186,7 +185,6 @@ def process_car_image(image_np_bgr, damage_threshold, part_threshold):
|
|
| 186 |
|
| 187 |
try:
|
| 188 |
# --- Create the image tensor ONCE for the annotator ---
|
| 189 |
-
# Needs to be HWC format on the correct device
|
| 190 |
try:
|
| 191 |
im_tensor_gpu_for_annotator = torch.from_numpy(image_np_bgr).to(DEVICE) # Keep HWC
|
| 192 |
if not isinstance(im_tensor_gpu_for_annotator, torch.Tensor) or im_tensor_gpu_for_annotator.ndim != 3:
|
|
@@ -217,9 +215,38 @@ def process_car_image(image_np_bgr, damage_threshold, part_threshold):
|
|
| 217 |
yolo_end_time = time.time()
|
| 218 |
logger.info(f" YOLO predictions took {yolo_end_time - yolo_start_time:.2f}s")
|
| 219 |
|
| 220 |
-
# --- 3. Resize Masks ---
|
| 221 |
def resize_masks(masks_tensor, target_h, target_w):
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
resize_start_time = time.time()
|
| 224 |
damage_masks_np = resize_masks(damage_masks_raw, img_h, img_w)
|
| 225 |
part_masks_np = resize_masks(part_masks_raw, img_h, img_w)
|
|
@@ -251,7 +278,6 @@ def process_car_image(image_np_bgr, damage_threshold, part_threshold):
|
|
| 251 |
if part_result.masks is not None and im_tensor_gpu_for_annotator is not None:
|
| 252 |
try:
|
| 253 |
colors_part = [(0, random.randint(100, 200), 0) for _ in part_classes_ids_cpu]
|
| 254 |
-
# Pass CORRECT image tensor (HWC on GPU) to annotator.masks
|
| 255 |
annotator.masks(part_masks_raw, colors=colors_part, im_gpu=im_tensor_gpu_for_annotator, alpha=0.3)
|
| 256 |
for box, cls_id in zip(part_boxes_xyxy_cpu, part_classes_ids_cpu):
|
| 257 |
try: label = f"{CAR_PART_CLASSES[cls_id]}"; annotator.box_label(box, label=label, color=(0, 200, 0))
|
|
@@ -264,7 +290,6 @@ def process_car_image(image_np_bgr, damage_threshold, part_threshold):
|
|
| 264 |
if damage_result.masks is not None and im_tensor_gpu_for_annotator is not None:
|
| 265 |
try:
|
| 266 |
colors_dmg = [(random.randint(100, 200), 0, 0) for _ in damage_classes_ids_cpu]
|
| 267 |
-
# Pass CORRECT image tensor (HWC on GPU) to annotator.masks
|
| 268 |
annotator.masks(damage_masks_raw, colors=colors_dmg, im_gpu=im_tensor_gpu_for_annotator, alpha=0.4)
|
| 269 |
for box, cls_id in zip(damage_boxes_xyxy_cpu, damage_classes_ids_cpu):
|
| 270 |
try: label = f"{DAMAGE_CLASSES[cls_id]}"; annotator.box_label(box, label=label, color=(200, 0, 0))
|
|
@@ -281,7 +306,6 @@ def process_car_image(image_np_bgr, damage_threshold, part_threshold):
|
|
| 281 |
logger.error(f"Error during combined processing: {e}", exc_info=True)
|
| 282 |
traceback.print_exc()
|
| 283 |
final_assignments.append("Error during segmentation/processing.")
|
| 284 |
-
# annotated_image_bgr remains the original copy in case of error
|
| 285 |
|
| 286 |
# --- Prepare output ---
|
| 287 |
assignment_text = "\n".join(final_assignments) if final_assignments else "No damage assignments generated."
|
|
|
|
| 1 |
+
# app.py (Complete Final Version - Fixed resize_masks SyntaxError)
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
|
|
|
| 40 |
|
| 41 |
# Paths within the Hugging Face Space repository (relative to app.py)
|
| 42 |
CLIP_TEXT_FEATURES_PATH = "./clip_text_features.pt"
|
| 43 |
+
DAMAGE_MODEL_WEIGHTS_PATH = "./model_best.pt" # Your YOLOv8 damage model weights
|
| 44 |
PART_MODEL_WEIGHTS_PATH = "./partdetection_yolobest.pt" # Your YOLOv8 part model weights
|
| 45 |
|
| 46 |
# Default Prediction Thresholds (can be overridden by sliders)
|
|
|
|
| 167 |
traceback.print_exc()
|
| 168 |
return "Error during CLIP processing", {"Error": 1.0}
|
| 169 |
|
|
|
|
| 170 |
def process_car_image(image_np_bgr, damage_threshold, part_threshold):
|
| 171 |
"""
|
| 172 |
Runs damage and part segmentation (YOLOv8), calculates overlap, visualizes.
|
|
|
|
| 185 |
|
| 186 |
try:
|
| 187 |
# --- Create the image tensor ONCE for the annotator ---
|
|
|
|
| 188 |
try:
|
| 189 |
im_tensor_gpu_for_annotator = torch.from_numpy(image_np_bgr).to(DEVICE) # Keep HWC
|
| 190 |
if not isinstance(im_tensor_gpu_for_annotator, torch.Tensor) or im_tensor_gpu_for_annotator.ndim != 3:
|
|
|
|
| 215 |
yolo_end_time = time.time()
|
| 216 |
logger.info(f" YOLO predictions took {yolo_end_time - yolo_start_time:.2f}s")
|
| 217 |
|
| 218 |
+
# --- 3. Resize Masks (Corrected Function Definition) ---
|
| 219 |
def resize_masks(masks_tensor, target_h, target_w):
|
| 220 |
+
"""Resizes masks tensor to target H, W using CPU numpy and OpenCV."""
|
| 221 |
+
masks_np_bool = masks_tensor.cpu().numpy().astype(bool) # Move to CPU *before* resizing
|
| 222 |
+
|
| 223 |
+
# Handle empty tensor or already correct size
|
| 224 |
+
if masks_np_bool.shape[0] == 0:
|
| 225 |
+
return np.array([]) # Return empty numpy array
|
| 226 |
+
if masks_np_bool.ndim == 3 and masks_np_bool.shape[1] == target_h and masks_np_bool.shape[2] == target_w:
|
| 227 |
+
return masks_np_bool # Return if already correct size
|
| 228 |
+
|
| 229 |
+
# Ensure masks_np_bool is 3D [N, H, W] even if only one mask
|
| 230 |
+
if masks_np_bool.ndim == 2: # Handle case of single mask output [H, W]
|
| 231 |
+
masks_np_bool = np.expand_dims(masks_np_bool, axis=0)
|
| 232 |
+
logger.warning("Detected 2D mask input, expanding to 3D for resize loop.")
|
| 233 |
+
|
| 234 |
+
# Check dimensions *before* logging resize message
|
| 235 |
+
if masks_np_bool.ndim != 3:
|
| 236 |
+
logger.error(f"Unexpected mask dimension: {masks_np_bool.ndim}. Expected 3D [N, H, W]. Cannot resize.")
|
| 237 |
+
return np.array([]) # Return empty if shape is wrong
|
| 238 |
+
|
| 239 |
+
# Proceed with resizing if necessary
|
| 240 |
+
# logger.info(f"Resizing {masks_np_bool.shape[0]} masks from {masks_np_bool.shape[1:]} to {(target_h, target_w)}") # Optional verbose log
|
| 241 |
+
resized_masks_list = []
|
| 242 |
+
for i in range(masks_np_bool.shape[0]):
|
| 243 |
+
mask = masks_np_bool[i] # Get the single [H, W] mask
|
| 244 |
+
# Resize needs uint8
|
| 245 |
+
mask_resized = cv2.resize(mask.astype(np.uint8), (target_w, target_h), interpolation=cv2.INTER_NEAREST)
|
| 246 |
+
resized_masks_list.append(mask_resized.astype(bool)) # Append boolean mask
|
| 247 |
+
return np.array(resized_masks_list) # Return numpy array [N, target_h, target_w]
|
| 248 |
+
|
| 249 |
+
# --- Perform resizing ---
|
| 250 |
resize_start_time = time.time()
|
| 251 |
damage_masks_np = resize_masks(damage_masks_raw, img_h, img_w)
|
| 252 |
part_masks_np = resize_masks(part_masks_raw, img_h, img_w)
|
|
|
|
| 278 |
if part_result.masks is not None and im_tensor_gpu_for_annotator is not None:
|
| 279 |
try:
|
| 280 |
colors_part = [(0, random.randint(100, 200), 0) for _ in part_classes_ids_cpu]
|
|
|
|
| 281 |
annotator.masks(part_masks_raw, colors=colors_part, im_gpu=im_tensor_gpu_for_annotator, alpha=0.3)
|
| 282 |
for box, cls_id in zip(part_boxes_xyxy_cpu, part_classes_ids_cpu):
|
| 283 |
try: label = f"{CAR_PART_CLASSES[cls_id]}"; annotator.box_label(box, label=label, color=(0, 200, 0))
|
|
|
|
| 290 |
if damage_result.masks is not None and im_tensor_gpu_for_annotator is not None:
|
| 291 |
try:
|
| 292 |
colors_dmg = [(random.randint(100, 200), 0, 0) for _ in damage_classes_ids_cpu]
|
|
|
|
| 293 |
annotator.masks(damage_masks_raw, colors=colors_dmg, im_gpu=im_tensor_gpu_for_annotator, alpha=0.4)
|
| 294 |
for box, cls_id in zip(damage_boxes_xyxy_cpu, damage_classes_ids_cpu):
|
| 295 |
try: label = f"{DAMAGE_CLASSES[cls_id]}"; annotator.box_label(box, label=label, color=(200, 0, 0))
|
|
|
|
| 306 |
logger.error(f"Error during combined processing: {e}", exc_info=True)
|
| 307 |
traceback.print_exc()
|
| 308 |
final_assignments.append("Error during segmentation/processing.")
|
|
|
|
| 309 |
|
| 310 |
# --- Prepare output ---
|
| 311 |
assignment_text = "\n".join(final_assignments) if final_assignments else "No damage assignments generated."
|