Spaces:
Running
Running
File size: 57,210 Bytes
0646b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 |
import copy
import json
import os
import shutil
from datetime import datetime
from typing import Any, Dict, List, Optional
import time
import pandas as pd
from cuga.backend.cuga_graph.nodes.api.code_agent.model import CodeAgentOutput
from cuga.backend.tools_env.registry.utils.types import AppDefinition
from cuga.backend.utils.id_utils import mask_with_timestamp, random_id_with_timestamp
from cuga.config import TRAJECTORY_DATA_DIR, settings
from langchain_core.tools import StructuredTool
from loguru import logger
from mcp.types import CallToolResult, TextContent
from pydantic import BaseModel, Field
AGENT_ANALYTICS = True
try:
from agent_analytics.instrumentation.utils import AIEventRecorder
from agent_analytics_core.interfaces.annotations import DataAnnotation
except Exception:
AGENT_ANALYTICS = False
logger.warning("Ignoring agent analytics")
class MergeResult(BaseModel):
folder_name: str
merged_task_ids: List[str]
class Prompt(BaseModel):
role: str
value: str
class Step(BaseModel):
name: Optional[str] = ""
plan: Optional[str] = ""
prompts: List[Prompt] = Field(default_factory=list)
data: Optional[str] = ""
task_decomposition: Optional[str] = ""
current_url: Optional[str] = ""
action_formatted: Optional[str] = ""
action_type: Optional[str] = ""
action_args: Optional[Any] = ""
observation_before: Optional[str] = ""
image_before: Optional[str] = ""
class TasksMetadata(BaseModel):
task_ids: List[str]
description: Optional[str] = ""
experiment_name: str
experiment_folder: str
created_at: str
class ActivityTracker(object):
_instance = None
start_time: float = 0
user_id: str = ""
intent: str = ""
session_id: str = ""
dataset_name: str = ""
prompts: List[Prompt] = []
current_date: Optional[str] = None
pi: Optional[str] = None
eval: Any = None
final_answer: Optional[str] = None
task_id: str = "default"
actions_count: int = 0
token_usage: int = 0
steps: List[Step] = []
images: List[str] = []
score: float = 0.0
tools: Dict[str, List[StructuredTool]] = {}
apps: List[AppDefinition] = []
# Task management attributes
tasks: Dict[str, Dict[str, Any]] = {}
experiment_folder: Optional[str] = None
tasks_metadata: Optional[TasksMetadata] = None
if settings.advanced_features.enable_memory:
from cuga.backend.memory.memory import Memory
memory = Memory()
# Base directory configuration
_base_dir: str = TRAJECTORY_DATA_DIR
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(ActivityTracker, cls).__new__(cls)
return cls._instance
async def invoke_tool(self, server_name: str, tool_name: str, args: dict):
if server_name not in self.tools:
raise ValueError(f"Server '{server_name}' not found")
# Find the tool by name
for tool in self.tools[server_name]:
if tool.name == tool_name:
result = await tool.ainvoke(args)
logger.debug(f"type of {type(result)}")
# logger.debug(f"Tool output call {result.con}")
# Check if result is JSON parseable
if isinstance(result, CallToolResult):
result = result.content[0]
if isinstance(result, TextContent):
result = result.text
if isinstance(result, str):
try:
res = json.loads(result)
logger.debug("json res worked!")
return res
except (json.JSONDecodeError, TypeError):
logger.debug("no json tool output !!")
# Not valid JSON, return original result
return result
else:
logger.debug(f"answer is not str answer is of type {type(result)}")
# Result is not a string, return as-is
return result
# Tool not found
available_tools = [tool.name for tool in self.tools[server_name]]
raise ValueError(
f"Tool '{tool_name}' not found in server '{server_name}'. Available tools: {available_tools}"
)
def invoke_tool_sync(self, server_name: str, tool_name: str, args: dict):
"""Synchronous version of invoke_tool to avoid async/sync context issues"""
import asyncio
import concurrent.futures
if server_name not in self.tools:
raise ValueError(f"Server '{server_name}' not found")
# Find the tool by name
for tool in self.tools[server_name]:
if tool.name == tool_name:
# Try synchronous invoke first
try:
result = tool.invoke(args) # Use synchronous invoke
except RuntimeError as e:
if "event loop is already running" in str(e):
# We're in an async context, need to handle this differently
try:
# Check if we have a running loop
asyncio.get_running_loop()
# We're in an async context, create a new thread to run the async function
def run_in_new_loop():
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
try:
# Use async invoke in the new loop
async def async_invoke():
return await tool.ainvoke(args)
return new_loop.run_until_complete(async_invoke())
finally:
new_loop.close()
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_new_loop)
result = future.result()
except RuntimeError:
# No running loop, use asyncio.run
import asyncio
async def async_invoke():
return await tool.ainvoke(args)
result = asyncio.run(async_invoke())
else:
raise
# logger.debug(f"type of {type(result)}")
# logger.debug(f"Tool output call {result}")
# Check if result is JSON parseable
if isinstance(result, CallToolResult):
result = result.content[0]
if isinstance(result, TextContent):
result = result.text
if isinstance(result, str):
try:
res = json.loads(result)
logger.debug("json res worked!")
return res
except (json.JSONDecodeError, TypeError):
logger.debug("no json tool output !!")
# Not valid JSON, return original result
return result
else:
logger.debug(f"answer is not str answer is of type {type(result)}")
# Result is not a string, return as-is
return result
# Tool not found
available_tools = [tool.name for tool in self.tools[server_name]]
raise ValueError(
f"Tool '{tool_name}' not found in server '{server_name}'. Available tools: {available_tools}"
)
def get_tools_by_server(self, server_name: str) -> Dict[str, Dict]:
tools = self.tools
if server_name not in tools:
return {}
server_tools = {}
for tool in tools[server_name]:
tool_config = {
"app_name": server_name,
"secure": False,
"api_name": tool.name,
"path": '',
"method": '',
"description": tool.description or '',
"parameters": tool.args_schema.model_json_schema(),
"response_schemas": 'Any',
"canary_string": '',
}
server_tools[tool.name] = tool_config
return server_tools
def set_tools(self, tools: List[StructuredTool]):
"""
Detects application prefixes and assigns server_name to tool metadata.
Returns list of AppDefinition objects for all detected applications.
Optionally fills self.tools dictionary with server_name grouped tools.
- For tools with metadata=None OR server_name=None: assigns detected app name or 'default'
- For tools with existing server_name: leaves unchanged
Args:
tools (list): List of tool objects with .name and .metadata attributes
self_tools (dict, optional): Dictionary to fill with server_name grouped tools
Returns:
List[AppDefinition]: List of app definitions with tools description
"""
self.tools = {}
# logger.debug(f"tools: {tools}")
# Common prefixes to exclude (HTTP methods, etc.)
excluded_prefixes = {'get', 'post', 'put', 'delete', 'patch', 'head', 'options', 'trace'}
# Step 1: Extract tool names for analysis (only for tools that need server_name assignment)
tools_to_process = [
tool for tool in tools if tool.metadata is None or tool.metadata.get("server_name", None) is None
]
tool_names = [tool.name for tool in tools_to_process]
# Step 2: Find potential prefixes and count occurrences
prefix_candidates = {}
for tool_name in tool_names:
# Split by underscore and take the first part as potential prefix
if '_' in tool_name:
potential_prefix = tool_name.split('_')[0].lower()
# Skip if it's an excluded prefix
if potential_prefix not in excluded_prefixes:
if potential_prefix not in prefix_candidates:
prefix_candidates[potential_prefix] = []
prefix_candidates[potential_prefix].append(tool_name)
# Step 3: Filter prefixes that appear in multiple tools (consistency check)
detected_applications = {}
for prefix, tool_list in prefix_candidates.items():
if len(tool_list) > 1: # Prefix appears in multiple tools - consistent!
detected_applications[prefix.upper()] = tool_list
# Step 4: Assign server_name to metadata for tools that need it
for tool in tools:
# Only process tools with metadata=None OR server_name=None
if tool.metadata is None or tool.metadata.get("server_name", None) is None:
tool_name = tool.name
server_name = 'default_app' # Default assignment
# Check if this tool belongs to any detected application
for app_name, app_tools in detected_applications.items():
if tool_name in app_tools:
server_name = app_name
break
# Initialize metadata if it's None, otherwise just update server_name
if tool.metadata is None:
tool.metadata = {"server_name": server_name}
else:
tool.metadata["server_name"] = server_name
# Step 5: Fill self.tools dictionary if provided
for tool in tools:
# Get server_name from tool metadata
server_name = tool.metadata.get('server_name')
# Skip tools without server_name metadata
if server_name is None:
raise Exception("Tool server name is none!")
# Initialize list for this server if it doesn't exist
if server_name not in self.tools:
self.tools[server_name] = []
# Add tool to the appropriate server group
self.tools[server_name].append(tool)
# Step 6: Collect all unique server_names and their associated tools
app_tools_map = {}
for tool in tools:
if tool.metadata is not None:
server_name = tool.metadata.get("server_name")
if server_name:
if server_name not in app_tools_map:
app_tools_map[server_name] = []
app_tools_map[server_name].append(tool)
# Step 7: Create AppDefinition objects
app_definitions = []
for app_name, tool_list in app_tools_map.items():
tools_description = "Available tools:\n" + "\n".join(
f"{tool.name}: {tool.description}" if tool.description else f"{tool.name}:"
for tool in sorted(tool_list, key=lambda x: x.name)
)
app_def = AppDefinition(name=app_name, description=tools_description, url=None)
app_definitions.append(app_def)
self.apps = app_definitions
def set_base_dir(self, base_dir: str) -> None:
"""
Set the base directory for logging trajectory data.
Args:
base_dir (str): The base directory path for storing experiment data
"""
self._base_dir = base_dir
logger.info(f"Base directory set to: {self._base_dir}")
def get_base_dir(self) -> str:
"""
Get the current base directory for logging trajectory data.
Returns:
str: The current base directory path
"""
return self._base_dir
def get_current_trajectory_path(self) -> Optional[str]:
"""
Get the full path of the current experiment folder.
Returns:
Optional[str]: The full path of the experiment folder, or None if no experiment is active.
"""
if self.experiment_folder:
return os.path.join(self._base_dir, self.experiment_folder, self.task_id + ".json")
return ""
def generate_session_id(self):
self.session_id = random_id_with_timestamp(full_date=True)
def reset(self, intent, task_id="default"):
self.token_usage = 0
self.start_time = time.time()
self.current_date = None
self.pi = None
self.prompts = []
self.steps = []
self.images = []
self.actions_count = 0
self.final_answer = None
self.task_id = task_id
self.intent = intent
self.user_id = None
def reload_steps(self, task_id: Optional[str] = None) -> bool:
"""
Reload steps from the current experiment's task JSON file.
Args:
task_id (str, optional): Task ID to reload. If None, uses current task_id.
Returns:
bool: True if steps were successfully reloaded, False otherwise.
"""
# Use provided task_id or fall back to current task_id
target_task_id = task_id if task_id is not None else self.task_id
if not target_task_id or target_task_id == "default":
logger.error("No valid task_id provided for reloading steps")
return False
# Get the trajectory path for the specified task
self.task_id = target_task_id
trajectory_path = self.get_current_trajectory_path()
if not trajectory_path:
logger.error(f"No trajectory path found for task_id: {target_task_id}")
return False
if not os.path.exists(trajectory_path):
logger.error(f"Trajectory file does not exist: {trajectory_path}")
return False
try:
# Read the JSON file
with open(trajectory_path, 'r', encoding='utf-8') as f:
trajectory_data = json.load(f)
# Extract steps from the JSON
steps_data = trajectory_data.get('steps', [])
# Convert dictionaries back to Step objects
reloaded_steps = []
for step_dict in steps_data:
try:
step = Step(**step_dict)
reloaded_steps.append(step)
except Exception as e:
logger.warning(f"Failed to convert step data to Step object: {e}")
continue
# Update current steps
self.steps = reloaded_steps
logger.info(f"Successfully reloaded {len(reloaded_steps)} steps for task_id: {target_task_id}")
return True
except (json.JSONDecodeError, IOError) as e:
logger.error(f"Error reading trajectory file {trajectory_path}: {e}")
return False
except Exception as e:
logger.error(f"Unexpected error while reloading steps: {e}")
return False
def start_experiment(
self, task_ids: List[str], experiment_name: str, description: Optional[str] = ""
) -> str:
"""
Start a new experiment with given task IDs.
Args:
task_ids (List[str]): List of task IDs for this experiment
experiment_name (str): Name of the experiment
description (str, optional): Description of the experiment
Returns:
str: The experiment folder name
"""
# Generate experiment folder name using mask_with_timestamp
self.experiment_folder = mask_with_timestamp(experiment_name, full_date=True)
# Create metadata
self.tasks_metadata = TasksMetadata(
task_ids=task_ids,
description=description,
experiment_name=experiment_name,
experiment_folder=self.experiment_folder,
created_at=datetime.now().isoformat(),
)
# Only create files and directories if tracker is enabled
if settings.advanced_features.tracker_enabled:
# Create directory structure
experiment_dir = os.path.join(self._base_dir, self.experiment_folder)
os.makedirs(experiment_dir, exist_ok=True)
# Save metadata to file
metadata_path = os.path.join(experiment_dir, "metadata.json")
with open(metadata_path, 'w', encoding='utf-8') as f:
json.dump(self.tasks_metadata.model_dump(), f, indent=2, ensure_ascii=False)
# Initialize empty files
self._initialize_experiment_files(experiment_dir)
# Reset tasks dictionary
self.tasks = {}
if settings.advanced_features.enable_memory:
from cuga.backend.memory.agentic_memory.client.exceptions import NamespaceNotFoundException
try:
self.memory.get_namespace_details(namespace_id="memory")
except NamespaceNotFoundException:
self.memory.create_namespace(namespace_id="memory")
self.memory.create_run(namespace_id="memory", run_id=self.experiment_folder)
# Start timer
self.start_time = time.time()
return self.experiment_folder
def _initialize_experiment_files(self, experiment_dir: str) -> None:
"""Initialize empty result files for the experiment."""
# Define column order for CSV
columns = [
'task_id',
'site',
'intent',
'agent_answer',
'eval',
'score',
'exception',
'num_steps',
'fail_category',
'agent_v',
]
# Create empty results.csv
results_csv_path = os.path.join(experiment_dir, "results.csv")
df = pd.DataFrame(columns=columns)
df.to_csv(results_csv_path, index=False, encoding='utf-8')
# Create empty results.json
results_json_path = os.path.join(experiment_dir, "results.json")
with open(results_json_path, 'w', encoding='utf-8') as f:
json.dump({}, f, indent=2, ensure_ascii=False)
# Create empty .progress file
progress_path = os.path.join(experiment_dir, ".progress")
with open(progress_path, 'w', encoding='utf-8') as f:
f.write("")
def collect_prompt(self, role: str, value: str):
self.prompts.append(Prompt(role=role, value=value))
def collect_tokens_usage(self, count: int) -> None:
"""
Increases the number of tokens used.
Args:
count (int): The number of times the token is used.
"""
self.token_usage += count
def collect_image(self, img: str) -> None:
if not img:
return
# Ensure the image string is compatible with OpenAI vision API: must be a valid URL or a data URL.
if img.startswith("data:image") or img.startswith("http://") or img.startswith("https://"):
self.images.append(img)
else:
# Assume raw base64 PNG data; prepend appropriate data URL header.
self.images.append(f"data:image/png;base64,{img}")
def collect_step(self, step: Step) -> None:
"""
Collects a step, adding it to the steps list.
Args:
step (Step): The description of the step to collect.
"""
data_json = None
try:
data_json = json.loads(step.data)
except Exception:
pass
# Attach any collected prompts to this step so they are persisted
if getattr(self, "prompts", None):
try:
step.prompts = list(self.prompts)
except Exception:
# Ensure prompts never break logging
step.prompts = []
# Attach the most recent captured image (if any) to the step
if getattr(self, "images", None):
try:
# Use the last captured screenshot as the "before" image
step.image_before = self.images[-1]
except Exception:
step.image_before = None
if AGENT_ANALYTICS:
if step.name == "TaskAnalyzerAgent":
AIEventRecorder.record_data_annotation(
name=step.name,
annotation_type=DataAnnotation.Type.RAW_TEXT,
annotation_title="Intent",
annotation_content=self.intent,
)
if step.name == "CodeAgent":
res_obj = CodeAgentOutput(**json.loads(step.data))
AIEventRecorder.record_data_annotation(
name="CodeAgent",
annotation_type=DataAnnotation.Type.CODE_GENERATION,
annotation_title="Generated Code",
annotation_content="\n" + res_obj.code,
)
AIEventRecorder.record_data_annotation(
name="CodeAgent",
annotation_type=DataAnnotation.Type.CODE_SNIPPET,
annotation_title="Code output",
annotation_content="\n" + res_obj.execution_output,
)
AIEventRecorder.record_data_annotation(
name="CodeAgent",
annotation_type=DataAnnotation.Type.RAW_TEXT,
annotation_title="Output summary",
annotation_content="\n" + res_obj.summary,
)
else:
if data_json and isinstance(data_json, dict):
if data_json.get('thoughts', None):
AIEventRecorder.record_data_annotation(
name=step.name,
annotation_type=DataAnnotation.Type.THOUGHT,
annotation_title=step.name,
annotation_content=f"{data_json.get('thoughts', None)}",
)
if len(list(data_json.keys())) == 1 and isinstance(
data_json[list(data_json.keys())[0]], str
):
AIEventRecorder.record_data_annotation(
name=step.name,
annotation_type=DataAnnotation.Type.RAW_TEXT,
annotation_title=step.name,
annotation_content=f"\n\n{data_json[list(data_json.keys())[0]]}",
)
else:
AIEventRecorder.record_data_annotation(
name=step.name,
annotation_type=DataAnnotation.Type.RAW_TEXT,
annotation_title=step.name,
annotation_content=json.dumps(data_json),
)
else:
AIEventRecorder.record_data_annotation(
name=step.name,
annotation_type=DataAnnotation.Type.RAW_TEXT,
annotation_title=step.name,
annotation_content=f"{step.data}",
)
if step.image_before:
AIEventRecorder.record_data_annotation(
name=step.name,
annotation_type=DataAnnotation.Type.MULTIMODAL_DATA,
annotation_title="Image",
annotation_content=f"{step.image_before}",
)
if settings.advanced_features.enable_memory:
from cuga.backend.memory.agentic_memory.utils.prompts import prompts
# Include intent in step metadata so it's available during tip extraction
step_data = step.model_dump()
step_data['intent'] = self.intent # Add the user's task intent
self.memory.add_step(
namespace_id='memory',
run_id=self.experiment_folder,
step=step_data,
prompt=prompts[step.name],
)
step.prompts = copy.deepcopy(self.prompts)
self.prompts = []
self.steps.append(step)
if settings.advanced_features.enable_memory and step.name == "FinalAnswerAgent":
# End run and execute any background processing.
self.memory.end_run(namespace_id="memory", run_id=self.experiment_folder)
if settings.advanced_features.tracker_enabled:
self.to_file()
self.prompts = []
def collect_step_external(self, step: Step, full_path: Optional[str] = None) -> None:
"""
Collects a step and saves it to a separate log file in a directory
specified by an environment variable.
The path is retrieved from os.environ['current_folder_path'].
The steps are saved to a file named 'recordinglg.json' in that directory.
Args:
step (Step): The Step object to collect.
full_path (Optional[str]): The full file path to save to. If None, the step is skipped.
TODO: Properly handle None full_path case - either provide a default path or make the
calling code always provide a valid path. Currently returns early if None to avoid errors.
"""
try:
if not settings.advanced_features.tracker_enabled:
return
# TODO: Handle None full_path properly - either use a default path or require callers to provide one
if not full_path:
logger.debug("Skipping external step collection: full_path is None")
return
if not os.path.exists(os.path.dirname(full_path)):
logger.error(
f"External path directory not found or does not exist: {os.path.dirname(full_path)}"
)
return
step.prompts = copy.deepcopy(self.prompts)
self.prompts = []
self.steps.append(step)
self._to_file_external_append(full_path, step)
logger.info(f"Step appended to external file: {full_path}")
except Exception as e:
logger.error(f"Failed to collect and save external step: {e}")
def _to_file_external_append(self, full_path: str, new_step: Step):
"""
Append a new step to an existing JSON file or create a new file if it doesn't exist.
This method reads the existing file, appends the new step, and saves it back.
Args:
full_path (str): The full file path to save/append to.
new_step (Step): The new step to append.
"""
try:
# Check if file exists and read existing data
if os.path.exists(full_path):
with open(full_path, 'r', encoding='utf-8') as f:
try:
existing_data = json.load(f)
# Ensure the existing data has the expected structure
if not isinstance(existing_data, dict) or 'steps' not in existing_data:
logger.warning(f"Invalid JSON structure in {full_path}, creating new file")
existing_data = None
except json.JSONDecodeError as e:
logger.warning(f"Invalid JSON in {full_path}, creating new file: {e}")
existing_data = None
else:
existing_data = None
# If no valid existing data, create new structure
if existing_data is None:
data_to_save = {
"intent": self.intent,
"dataset_name": self.dataset_name,
"actions_count": self.actions_count,
"task_id": self.task_id,
"eval": self.eval,
"steps": [new_step.model_dump()],
"score": self.score,
}
else:
# Update existing data with new step
existing_data["steps"].append(new_step.model_dump())
# Update other fields that might have changed
existing_data.update(
{
"intent": self.intent,
"dataset_name": self.dataset_name,
"actions_count": self.actions_count,
"task_id": self.task_id,
"eval": self.eval,
"score": self.score,
}
)
data_to_save = existing_data
# Write the updated data back to file
with open(full_path, 'w', encoding='utf-8') as f:
json.dump(
data_to_save,
f,
ensure_ascii=False,
indent=4,
)
except Exception as e:
logger.error(f"Failed to append step to file {full_path}: {e}")
raise
def collect_score(self, score: float) -> None:
"""
Collects a step, adding it to the steps list.
Args:
score (str): The description of the step to collect.
"""
self.score = score
if settings.advanced_features.tracker_enabled:
self.to_file()
def collect_step_with_pass(self) -> None:
"""
Placeholder for collecting a step.
"""
pass
def to_file(self):
"""Save current task data to file in the experiment directory."""
if self.experiment_folder:
# Save to experiment directory
source_dir = os.path.join(self._base_dir, self.experiment_folder)
else:
# Fallback to original behavior
source_dir = "logging{}".format("_" + self.dataset_name if self.dataset_name else "")
os.makedirs(source_dir, exist_ok=True)
filename = self.task_id if self.task_id != "default" else self.session_id
filepath = os.path.join(source_dir, f"{filename}.json")
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(
{
"intent": self.intent,
"dataset_name": self.dataset_name,
"actions_count": self.actions_count,
"task_id": self.task_id,
"eval": self.eval,
"steps": [d.model_dump() for d in self.steps],
"score": self.score,
},
f,
ensure_ascii=False,
indent=4,
)
def finish_task(
self,
task_id: str,
site: str,
intent: str,
agent_answer: Optional[str] = None,
eval: Optional[str] = None,
score: Optional[float] = None,
exception: Optional[bool] = None,
num_steps: Optional[int] = None,
fail_category: Optional[str] = None,
agent_v: Optional[str] = None,
duration: Optional[int] = None,
total_llm_calls: Optional[int] = None,
total_tokens: Optional[int] = None,
total_cost: Optional[float] = None,
total_cache_input_tokens: Optional[int] = None,
) -> str:
"""
Mark a task as finished and update result files.
Args:
task_id (str): Required unique identifier for the task
site (str): Required site name
intent (str): Task intent/description
agent_answer (str, optional): Agent's answer
eval (str, optional): Evaluation details
score (float, optional): Task score
exception (bool, optional): Whether an exception occurred
num_steps (int, optional): Number of steps taken
fail_category (str, optional): Category of failure if applicable
agent_v (str, optional): Agent version
Returns:
str: The ID of the finished task
"""
if not self.experiment_folder:
raise ValueError("No experiment started. Call start_experiment() first.")
# Calculate number of api calls
api_calls_num = len([step for step in self.steps if "api_call" in step.name])
# Add task to internal storage
self.tasks[task_id] = {
"site": site,
"intent": intent,
"agent_answer": agent_answer,
"eval": eval,
"score": score,
"exception": exception,
"num_steps": num_steps if num_steps is not None else len(self.steps),
"fail_category": fail_category,
"agent_v": agent_v,
"duration": duration if duration is not None else time.time() - self.start_time,
"total_llm_calls": total_llm_calls,
"total_tokens": self.token_usage if not total_tokens else total_tokens,
"api_calls": api_calls_num,
"total_cost": total_cost,
"total_cache_input_tokens": total_cache_input_tokens,
}
# Update result files only if tracker is enabled
if settings.advanced_features.tracker_enabled:
self._update_result_files()
self._add_to_progress_file(task_id)
return task_id
def _update_result_files(self) -> None:
"""Update both JSON and CSV result files."""
if not self.experiment_folder:
return
experiment_dir = os.path.join(self._base_dir, self.experiment_folder)
# Update results.json
results_json_path = os.path.join(experiment_dir, "results.json")
with open(results_json_path, 'w', encoding='utf-8') as f:
json.dump(self.tasks, f, indent=2, ensure_ascii=False)
# Update results.csv
self._save_csv(experiment_dir)
def _save_csv(self, experiment_dir: str) -> None:
"""Save current tasks to CSV file using pandas."""
# Define the column order
columns = [
'task_id',
'site',
'intent',
'agent_answer',
'eval',
'score',
'exception',
'num_steps',
'fail_category',
'agent_v',
'duration',
'total_llm_calls',
'total_tokens',
'api_calls',
'total_cost',
'total_cache_input_tokens',
]
if not self.tasks:
# Create empty DataFrame with headers if no tasks
df = pd.DataFrame(columns=columns)
else:
# Convert tasks dictionary to list of dictionaries for DataFrame
data = []
for task_id, task_data in self.tasks.items():
row = {'task_id': task_id}
row.update(task_data)
data.append(row)
# Create DataFrame
df = pd.DataFrame(data)
# Reorder columns to match the desired order
df = df.reindex(columns=columns)
# Save to CSV
results_csv_path = os.path.join(experiment_dir, "results.csv")
df.to_csv(results_csv_path, index=False, encoding='utf-8')
def _add_to_progress_file(self, task_id: str) -> None:
"""Add a task ID to the .progress file."""
if not self.experiment_folder:
return
progress_path = os.path.join(self._base_dir, self.experiment_folder, ".progress")
with open(progress_path, 'a', encoding='utf-8') as f:
f.write(task_id + '\n')
def update_task(
self,
task_id: str,
site: Optional[str] = None,
intent: Optional[str] = None,
agent_answer: Optional[str] = None,
eval: Optional[str] = None,
score: Optional[float] = None,
exception: Optional[bool] = None,
num_steps: Optional[int] = None,
fail_category: Optional[str] = None,
agent_v: Optional[str] = None,
) -> bool:
"""
Update an existing task.
Args:
task_id (str): ID of the task to update
site (str, optional): New site
intent (str, optional): New intent
agent_answer (str, optional): New agent answer
eval (str, optional): New evaluation
score (float, optional): New score
exception (bool, optional): New exception status
num_steps (int, optional): New number of steps
fail_category (str, optional): New fail category
agent_v (str, optional): New agent version
Returns:
bool: True if task was updated, False if task not found
"""
if task_id not in self.tasks:
return False
# Update only provided fields
if site is not None:
self.tasks[task_id]["site"] = site
if intent is not None:
self.tasks[task_id]["intent"] = intent
if agent_answer is not None:
self.tasks[task_id]["agent_answer"] = agent_answer
if eval is not None:
self.tasks[task_id]["eval"] = eval
if score is not None:
self.tasks[task_id]["score"] = score
if exception is not None:
self.tasks[task_id]["exception"] = exception
if num_steps is not None:
self.tasks[task_id]["num_steps"] = num_steps
if fail_category is not None:
self.tasks[task_id]["fail_category"] = fail_category
if agent_v is not None:
self.tasks[task_id]["agent_v"] = agent_v
if settings.advanced_features.tracker_enabled:
self._update_result_files()
return True
def remove_task(self, task_id: str) -> bool:
"""
Remove a task from the results.
Args:
task_id (str): ID of the task to remove
Returns:
bool: True if task was removed, False if task not found
"""
if task_id in self.tasks:
del self.tasks[task_id]
if settings.advanced_features.tracker_enabled:
self._update_result_files()
return True
return False
def get_task(self, task_id: str) -> Optional[Dict[str, Any]]:
"""
Get a specific task by ID.
Args:
task_id (str): ID of the task to retrieve
Returns:
Dict containing task data or None if not found
"""
return self.tasks.get(task_id)
def get_all_tasks(self) -> Dict[str, Dict[str, Any]]:
"""
Get all tasks.
Returns:
Dict containing all tasks
"""
return self.tasks.copy()
def find_tasks_by_score(self, score: float) -> Dict[str, Dict[str, Any]]:
"""
Find all tasks with a specific score.
Args:
score (float): Score to search for
Returns:
Dict containing matching tasks
"""
return {task_id: task for task_id, task in self.tasks.items() if task.get("score") == score}
def find_tasks_by_site(self, site: str) -> Dict[str, Dict[str, Any]]:
"""
Find all tasks with a specific site.
Args:
site (str): Site to search for
Returns:
Dict containing matching tasks
"""
return {task_id: task for task_id, task in self.tasks.items() if task.get("site") == site}
def find_tasks_by_exception(self, exception: bool) -> Dict[str, Dict[str, Any]]:
"""
Find all tasks with specific exception status.
Args:
exception (bool): Exception status to search for
Returns:
Dict containing matching tasks
"""
return {task_id: task for task_id, task in self.tasks.items() if task.get("exception") == exception}
def find_tasks_by_agent_version(self, agent_v: str) -> Dict[str, Dict[str, Any]]:
"""
Find all tasks with a specific agent version.
Args:
agent_v (str): Agent version to search for
Returns:
Dict containing matching tasks
"""
return {task_id: task for task_id, task in self.tasks.items() if task.get("agent_v") == agent_v}
def clear_all_tasks(self) -> None:
"""Remove all tasks from result files."""
self.tasks = {}
if self.experiment_folder and settings.advanced_features.tracker_enabled:
self._update_result_files()
# Clear progress file
progress_path = os.path.join(self._base_dir, self.experiment_folder, ".progress")
with open(progress_path, 'w', encoding='utf-8') as f:
f.truncate(0)
def get_task_count(self) -> int:
"""
Get the total number of tasks.
Returns:
int: Number of tasks
"""
return len(self.tasks)
def get_statistics(self) -> Dict[str, Any]:
"""
Get basic statistics about the tasks.
Returns:
Dict containing task statistics
"""
if not self.tasks:
return {"total_tasks": 0}
stats = {
"total_tasks": len(self.tasks),
"tasks_with_exceptions": len([t for t in self.tasks.values() if t.get("exception") is True]),
"tasks_without_exceptions": len([t for t in self.tasks.values() if t.get("exception") is False]),
"unique_sites": len(set(t.get("site") for t in self.tasks.values() if t.get("site"))),
"unique_agent_versions": len(
set(t.get("agent_v") for t in self.tasks.values() if t.get("agent_v"))
),
}
# Score statistics
scores = [t.get("score") for t in self.tasks.values() if t.get("score") is not None]
if scores:
stats["average_score"] = sum(scores) / len(scores)
stats["min_score"] = min(scores)
stats["max_score"] = max(scores)
return stats
def get_dataframe(self) -> pd.DataFrame:
"""
Get all tasks as a pandas DataFrame.
Returns:
pd.DataFrame: DataFrame containing all tasks
"""
columns = [
'task_id',
'site',
'intent',
'agent_answer',
'eval',
'score',
'exception',
'num_steps',
'fail_category',
'agent_v',
]
if not self.tasks:
return pd.DataFrame(columns=columns)
data = []
for task_id, task_data in self.tasks.items():
row = {'task_id': task_id}
row.update(task_data)
data.append(row)
df = pd.DataFrame(data)
return df.reindex(columns=columns)
def _copy_task_json_files(
self,
source_folders: List[str],
target_folder: str,
selected_task_ids: List[str],
base_dir: str = None,
) -> None:
"""
Copy individual task JSON files from source folders to target folder.
Args:
source_folders (List[str]): List of source experiment folder names
target_folder (str): Target experiment folder name
selected_task_ids (List[str]): List of task IDs to copy
base_dir (str, optional): Base directory. If None, uses instance base_dir
"""
if base_dir is None:
base_dir = self._base_dir
target_dir = os.path.join(base_dir, target_folder)
copied_files = 0
skipped_files = 0
for task_id in selected_task_ids:
file_found = False
# Look for the task JSON file in each source folder
for folder_name in source_folders:
source_dir = os.path.join(base_dir, folder_name)
source_file = os.path.join(source_dir, f"{task_id}.json")
if os.path.exists(source_file):
target_file = os.path.join(target_dir, f"{task_id}.json")
try:
# Copy the file
shutil.copy2(source_file, target_file)
logger.debug(f"Copied {task_id}.json from {folder_name}")
copied_files += 1
file_found = True
break # Found and copied, move to next task
except Exception as e:
logger.error(f"Failed to copy {task_id}.json from {folder_name}: {e}")
if not file_found:
logger.warning(f"Task JSON file {task_id}.json not found in any source folder")
skipped_files += 1
logger.info(f"Task JSON files - Copied: {copied_files}, Skipped: {skipped_files}")
def merge_experiments(
self,
experiment_folders: List[str],
output_experiment_name: str,
description: Optional[str] = "Merged experiments",
output_folder: Optional[str] = None,
) -> MergeResult:
"""
Merge multiple experiment folders, preferring tasks with score 1.0 over 0.0.
Also copies individual task JSON files from source experiments.
Args:
experiment_folders (List[str]): List of experiment folder names to merge
output_experiment_name (str): Name for the merged experiment
description (str, optional): Description for the merged experiment
Returns:
MergeResult: Contains folder_name and merged_task_ids
"""
logger.info(f"Starting merge of {len(experiment_folders)} experiments")
# Create new experiment for merged results
merged_folder = self.start_experiment(
task_ids=[], # Will be populated with merged task IDs
experiment_name=output_experiment_name,
description=description,
)
merged_tasks = {}
all_task_ids = set()
task_source_mapping = {} # Track which folder each task came from
# First pass: collect all tasks and identify duplicates
for folder_name in experiment_folders:
folder_path = os.path.join(self._base_dir, folder_name)
results_json_path = os.path.join(folder_path, "results.json")
if not os.path.exists(results_json_path):
logger.warning(f"Results file not found in {folder_name}, skipping")
continue
try:
with open(results_json_path, 'r', encoding='utf-8') as f:
folder_tasks = json.load(f)
logger.info(f"Processing {len(folder_tasks)} tasks from {folder_name}")
for task_id, task_data in folder_tasks.items():
all_task_ids.add(task_id)
if task_id not in merged_tasks:
# First occurrence of this task
merged_tasks[task_id] = {**task_data, 'source_experiment': folder_name}
task_source_mapping[task_id] = folder_name
logger.debug(f"Added new task {task_id} from {folder_name}")
else:
# Task already exists, apply preference logic
existing_score = merged_tasks[task_id].get('score', 0.0)
new_score = task_data.get('score', 0.0)
if existing_score == 1.0 and new_score != 1.0:
# Keep existing (perfect score)
should_replace = False
elif existing_score != 1.0 and new_score == 1.0:
# Replace with perfect score
should_replace = True
elif existing_score == new_score:
# Same score, keep existing (first found)
should_replace = False
else:
# Different scores, prefer higher
should_replace = new_score > existing_score
if should_replace:
merged_tasks[task_id] = {**task_data, 'source_experiment': folder_name}
task_source_mapping[task_id] = folder_name
logger.debug(
f"Replaced task {task_id}: {existing_score} -> {new_score} from {folder_name}"
)
else:
logger.debug(
f"Kept existing task {task_id}: score {existing_score} vs {new_score}"
)
except Exception as e:
logger.error(f"Error processing {folder_name}: {e}")
continue
# Update the merged experiment with final task list
self.tasks = merged_tasks
# Update metadata with actual task IDs
if self.tasks_metadata:
self.tasks_metadata.task_ids = list(all_task_ids)
# Save updated metadata
experiment_dir = os.path.join(self._base_dir, merged_folder)
metadata_path = os.path.join(experiment_dir, "metadata.json")
with open(metadata_path, 'w', encoding='utf-8') as f:
json.dump(self.tasks_metadata.model_dump(), f, indent=2, ensure_ascii=False)
# Update result files with merged data only if tracker is enabled
if settings.advanced_features.tracker_enabled:
self._update_result_files()
# Update progress file with all task IDs
for task_id in merged_tasks.keys():
self._add_to_progress_file(task_id)
# Copy individual task JSON files only if tracker is enabled
if settings.advanced_features.tracker_enabled:
logger.info("Copying individual task JSON files...")
selected_task_ids = list(merged_tasks.keys())
self._copy_task_json_files(experiment_folders, merged_folder, selected_task_ids)
logger.success(f"Successfully merged {len(merged_tasks)} tasks into {merged_folder}")
logger.info(f"Source experiments: {experiment_folders}")
score_distribution = {}
source_distribution = {}
for task_data in merged_tasks.values():
score = task_data.get('score', 0.0)
source = task_data.get('source_experiment', 'unknown')
score_distribution[score] = score_distribution.get(score, 0) + 1
source_distribution[source] = source_distribution.get(source, 0) + 1
logger.info(f"Score distribution in merged results: {score_distribution}")
logger.info(f"Source distribution in merged results: {source_distribution}")
# Return MergeResult
return MergeResult(folder_name=merged_folder, merged_task_ids=list(merged_tasks.keys()))
def list_experiment_folders(self, base_path: Optional[str] = None) -> List[str]:
"""
List all available experiment folders.
Args:
base_path (str, optional): Base directory to search for experiments.
If None, uses instance base_dir
Returns:
List[str]: List of experiment folder names
"""
if base_path is None:
base_path = self._base_dir
if not os.path.exists(base_path):
logger.warning(f"Base path {base_path} does not exist")
return []
folders = []
for item in os.listdir(base_path):
item_path = os.path.join(base_path, item)
if os.path.isdir(item_path):
# Check if it looks like an experiment folder (has metadata.json)
metadata_path = os.path.join(item_path, "metadata.json")
if os.path.exists(metadata_path):
folders.append(item)
logger.info(f"Found {len(folders)} experiment folders")
return sorted(folders)
@staticmethod
def list_experiment_folders_static(base_path: str = "./logging/trajectory_data") -> List[str]:
"""
Static method to list all available experiment folders.
Args:
base_path (str): Base directory to search for experiments
Returns:
List[str]: List of experiment folder names
"""
if not os.path.exists(base_path):
logger.warning(f"Base path {base_path} does not exist")
return []
folders = []
for item in os.listdir(base_path):
item_path = os.path.join(base_path, item)
if os.path.isdir(item_path):
# Check if it looks like an experiment folder (has metadata.json)
metadata_path = os.path.join(item_path, "metadata.json")
if os.path.exists(metadata_path):
folders.append(item)
logger.info(f"Found {len(folders)} experiment folders")
return sorted(folders)
def get_experiment_progress(self, experiment_folder_name: str) -> Dict[str, Any]:
"""
Get the progress of a specific experiment.
Args:
experiment_folder_name (str): The name of the experiment folder.
Returns:
Dict[str, Any]: A dictionary containing 'total_tasks', 'completed_tasks', and 'uncompleted_task_ids'.
Returns default values if files are not found or errors occur.
"""
experiment_dir = os.path.join(self._base_dir, experiment_folder_name)
metadata_path = os.path.join(experiment_dir, "metadata.json")
progress_path = os.path.join(experiment_dir, ".progress")
total_tasks = 0
completed_tasks = 0
all_task_ids = set()
completed_task_ids = set()
# Read total tasks from metadata.json
if os.path.exists(metadata_path):
try:
with open(metadata_path, 'r', encoding='utf-8') as f:
metadata = json.load(f)
all_task_ids = set(metadata.get('task_ids', []))
total_tasks = len(all_task_ids)
except (json.JSONDecodeError, IOError) as e:
logger.error(f"Error reading metadata.json for {experiment_folder_name}: {e}")
else:
logger.warning(f"metadata.json not found for experiment: {experiment_folder_name}")
# Read completed tasks from .progress
if os.path.exists(progress_path):
try:
with open(progress_path, 'r', encoding='utf-8') as f:
completed_task_ids = set(line.strip() for line in f if line.strip())
completed_tasks = len(completed_task_ids)
except IOError as e:
logger.error(f"Error reading .progress file for {experiment_folder_name}: {e}")
else:
logger.info(f".progress file not found for experiment: {experiment_folder_name}")
uncompleted_task_ids = list(sorted(list(all_task_ids - completed_task_ids)))
return {
"total_tasks": total_tasks,
"completed_tasks": completed_tasks,
"uncompleted_task_ids": uncompleted_task_ids,
}
|