Spaces:
Runtime error
Runtime error
kaushikbar
commited on
Commit
·
f657d03
1
Parent(s):
b6907c2
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
gr.Interface.load("huggingface/NDugar/debertav3-mnli-snli-anli").launch()
|
| 3 |
+
|
| 4 |
+
'''
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import datetime
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
|
| 9 |
+
models = {'norsk': 'NbAiLab/nb-bert-base-mnli', #'english': 'DeepPavlov/xlm-roberta-large-en-ru-mnli',
|
| 10 |
+
English: Narsil/deberta-large-mnli-zero-cls
|
| 11 |
+
German: Sahajtomar/German_Zeroshot
|
| 12 |
+
Spanish: Recognai/zeroshot_selectra_medium
|
| 13 |
+
Italian: joeddav/xlm-roberta-large-xnl}
|
| 14 |
+
classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def sequence_to_classify(sequence, labels):
|
| 18 |
+
hypothesis_template = 'Dette eksempelet er {}.'
|
| 19 |
+
label_clean = str(labels).split(",")
|
| 20 |
+
response = classifier(sequence, label_clean, hypothesis_template=hypothesis_template, multi_class=True)
|
| 21 |
+
predicted_labels = response['labels']
|
| 22 |
+
predicted_scores = response['scores']
|
| 23 |
+
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
|
| 24 |
+
print("Date:{} , Sequece:{}, Labels: {}".format(
|
| 25 |
+
str(datetime.datetime.now()),
|
| 26 |
+
sequence,
|
| 27 |
+
predicted_labels)
|
| 28 |
+
)
|
| 29 |
+
return clean_output
|
| 30 |
+
|
| 31 |
+
example_text1="Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september."
|
| 32 |
+
example_labels1="politikk,helse,sport,religion"
|
| 33 |
+
example_text2="Kutt smør i terninger, og la det temperere seg litt mens deigen elter. Ha hvetemel, sukker, gjær, salt og kardemomme i en bakebolle til kjøkkenmaskin. Bruker du fersk gjær kan du smuldre gjæren i bollen, eller røre den ut i melken. Alt vil ettehvert blande seg godt, så begge deler er like bra."
|
| 34 |
+
example_labels2="helse,sport,religion, mat"
|
| 35 |
+
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
title = "Zero-shot Classification of Norwegian Text",
|
| 38 |
+
description = "Demo of zero-shot classification using NB-Bert base model (Norwegian).",
|
| 39 |
+
fn=sequence_to_classify,
|
| 40 |
+
inputs=[gr.inputs.Textbox(lines=2,
|
| 41 |
+
label="Write a norwegian text you would like to classify...",
|
| 42 |
+
placeholder="Text here..."),
|
| 43 |
+
gr.inputs.Textbox(lines=10,
|
| 44 |
+
label="Possible candidate labels",
|
| 45 |
+
placeholder="labels here...")],
|
| 46 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
| 47 |
+
capture_session=True,
|
| 48 |
+
interpretation="default"
|
| 49 |
+
,examples=[
|
| 50 |
+
[example_text1, example_labels1],
|
| 51 |
+
[example_text2, example_labels2]
|
| 52 |
+
])
|
| 53 |
+
iface.launch()
|
| 54 |
+
'''
|