Spaces:
Runtime error
Runtime error
kaushikbar
commited on
Commit
·
ccfea75
1
Parent(s):
08887e8
word attributes
Browse files- app.py +23 -0
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -4,6 +4,8 @@ from huggingface_hub import hf_hub_download
|
|
| 4 |
from langdetect import detect, DetectorFactory, detect_langs
|
| 5 |
import fasttext
|
| 6 |
from transformers import pipeline
|
|
|
|
|
|
|
| 7 |
|
| 8 |
models = {'en': 'Narsil/deberta-large-mnli-zero-cls', #'microsoft/deberta-xlarge-mnli' # English
|
| 9 |
'de': 'Sahajtomar/German_Zeroshot', # German
|
|
@@ -38,6 +40,10 @@ classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hy
|
|
| 38 |
|
| 39 |
fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin"))
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def prep_examples():
|
| 42 |
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
|
| 43 |
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
|
|
@@ -156,6 +162,23 @@ def sequence_to_classify(sequence, labels):
|
|
| 156 |
str(datetime.datetime.now()),
|
| 157 |
sequence,
|
| 158 |
predicted_labels))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
return clean_output
|
| 161 |
|
|
|
|
| 4 |
from langdetect import detect, DetectorFactory, detect_langs
|
| 5 |
import fasttext
|
| 6 |
from transformers import pipeline
|
| 7 |
+
from transformers_interpret import ZeroShotClassificationExplainer
|
| 8 |
+
import string, nltk
|
| 9 |
|
| 10 |
models = {'en': 'Narsil/deberta-large-mnli-zero-cls', #'microsoft/deberta-xlarge-mnli' # English
|
| 11 |
'de': 'Sahajtomar/German_Zeroshot', # German
|
|
|
|
| 40 |
|
| 41 |
fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin"))
|
| 42 |
|
| 43 |
+
_ = nltk.download('stopwords', quiet=True)
|
| 44 |
+
_ = nltk.download('wordnet', quiet=True)
|
| 45 |
+
_ = nltk.download('punkt', quiet=True)
|
| 46 |
+
|
| 47 |
def prep_examples():
|
| 48 |
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
|
| 49 |
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
|
|
|
|
| 162 |
str(datetime.datetime.now()),
|
| 163 |
sequence,
|
| 164 |
predicted_labels))
|
| 165 |
+
|
| 166 |
+
# Explain word attributes
|
| 167 |
+
stop_words = nltk.corpus.stopwords.words('english')
|
| 168 |
+
puncts = list(string.punctuation)
|
| 169 |
+
|
| 170 |
+
model_expl = ZeroShotClassificationExplainer(classifier.model, classifier.tokenizer)
|
| 171 |
+
response_expl = model_expl(sequence, labels, hypothesis_template="This example is {}.")
|
| 172 |
+
|
| 173 |
+
if len(labels_pred) == 1:
|
| 174 |
+
response_expl = response_expl[model_expl.predicted_label]
|
| 175 |
+
|
| 176 |
+
for key in response_expl:
|
| 177 |
+
for idx, elem in enumerate(response_expl[key]):
|
| 178 |
+
if elem[0] in stop_words:
|
| 179 |
+
del response_expl[key][idx]
|
| 180 |
+
|
| 181 |
+
print(response_expl)
|
| 182 |
|
| 183 |
return clean_output
|
| 184 |
|
requirements.txt
CHANGED
|
@@ -3,4 +3,6 @@ sentence-transformers
|
|
| 3 |
torch
|
| 4 |
langdetect
|
| 5 |
fasttext
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 3 |
torch
|
| 4 |
langdetect
|
| 5 |
fasttext
|
| 6 |
+
transformers_interpret
|
| 7 |
+
nltk
|
| 8 |
|