Spaces:
Runtime error
Runtime error
kaushikbar
commited on
Commit
·
71775e2
1
Parent(s):
36c639f
Multiple language support added.
Browse files- app.py +74 -17
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,21 +1,78 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import datetime
|
|
|
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
def sequence_to_classify(sequence, labels):
|
| 8 |
-
hypothesis_template = 'Dette eksempelet er {}.'
|
| 9 |
label_clean = str(labels).split(",")
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
predicted_labels = response['labels']
|
| 12 |
predicted_scores = response['scores']
|
| 13 |
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
|
| 14 |
-
print("Date:{}
|
| 15 |
str(datetime.datetime.now()),
|
| 16 |
sequence,
|
| 17 |
-
predicted_labels)
|
| 18 |
-
|
| 19 |
return clean_output
|
| 20 |
|
| 21 |
example_text1="Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september."
|
|
@@ -24,19 +81,19 @@ example_text2="Kutt smør i terninger, og la det temperere seg litt mens deigen
|
|
| 24 |
example_labels2="helse,sport,religion, mat"
|
| 25 |
|
| 26 |
iface = gr.Interface(
|
| 27 |
-
title
|
| 28 |
-
description
|
| 29 |
fn=sequence_to_classify,
|
| 30 |
-
inputs=[gr.inputs.Textbox(lines=
|
| 31 |
-
label="
|
| 32 |
placeholder="Text here..."),
|
| 33 |
-
gr.inputs.Textbox(lines=
|
| 34 |
-
label="Possible candidate labels",
|
| 35 |
-
placeholder="
|
| 36 |
-
outputs=gr.outputs.Label(num_top_classes=
|
| 37 |
capture_session=True,
|
| 38 |
-
interpretation="default"
|
| 39 |
-
|
| 40 |
[example_text1, example_labels1],
|
| 41 |
[example_text2, example_labels2]
|
| 42 |
])
|
|
|
|
|
|
|
| 1 |
import datetime
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from langdetect import detect, DetectorFactory, detect_langs
|
| 4 |
from transformers import pipeline
|
| 5 |
+
|
| 6 |
+
models = {'en': 'Narsil/deberta-large-mnli-zero-cls', # English
|
| 7 |
+
'de': 'Sahajtomar/German_Zeroshot', # German
|
| 8 |
+
'es': 'Recognai/zeroshot_selectra_medium', # Spanish
|
| 9 |
+
'it': 'joeddav/xlm-roberta-large-xnli', # Italian
|
| 10 |
+
'ru': 'DeepPavlov/xlm-roberta-large-en-ru-mnli', # Russian
|
| 11 |
+
'no': 'NbAiLab/nb-bert-base-mnli'} # Norsk
|
| 12 |
+
|
| 13 |
+
hypothesis_templates = {'en': 'This example is {}.', # English
|
| 14 |
+
'de': 'Dieses beispiel ist {}.', # German
|
| 15 |
+
'es': 'Este ejemplo es {}.', # Spanish
|
| 16 |
+
'it': 'Questo esempio è {}.', # Italian
|
| 17 |
+
'ru': 'Этот пример {}.', # Russian
|
| 18 |
+
'no': 'Dette eksempelet er {}.'} # Norsk
|
| 19 |
+
|
| 20 |
+
def detect_lang(sequence, labels):
|
| 21 |
+
DetectorFactory.seed = 0
|
| 22 |
+
seq_lang = 'en'
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
seq_lang = detect(sequence)
|
| 26 |
+
lbl_lang = detect(labels)
|
| 27 |
+
except:
|
| 28 |
+
print("Language detection failed!",
|
| 29 |
+
"Date:{}, Sequence:{}, Labels:{}".format(
|
| 30 |
+
str(datetime.datetime.now()),
|
| 31 |
+
labels))
|
| 32 |
+
|
| 33 |
+
if seq_lang != lbl_lang:
|
| 34 |
+
print("Different languages detected for sequence and labels!",
|
| 35 |
+
"Date:{}, Sequence:{}, Labels:{}, Sequence Language:{}, Label Language:{}".format(
|
| 36 |
+
str(datetime.datetime.now()),
|
| 37 |
+
sequence,
|
| 38 |
+
labels,
|
| 39 |
+
seq_lang,
|
| 40 |
+
lbl_lang))
|
| 41 |
+
|
| 42 |
+
if seq_lang in models:
|
| 43 |
+
print("Sequence Language detected:",
|
| 44 |
+
"Date:{}, Sequence:{}, Sequence Language:{}".format(
|
| 45 |
+
str(datetime.datetime.now()),
|
| 46 |
+
sequence,
|
| 47 |
+
labels))
|
| 48 |
+
else:
|
| 49 |
+
print("Language not supported. Defaulting to English!",
|
| 50 |
+
"Date:{}, Sequence:{}, Sequence Language:{}".format(
|
| 51 |
+
str(datetime.datetime.now()),
|
| 52 |
+
sequence,
|
| 53 |
+
seq_lang))
|
| 54 |
+
seq_lang = 'en'
|
| 55 |
+
|
| 56 |
+
return seq_lang
|
| 57 |
|
| 58 |
|
| 59 |
def sequence_to_classify(sequence, labels):
|
|
|
|
| 60 |
label_clean = str(labels).split(",")
|
| 61 |
+
|
| 62 |
+
lang = detect_lang(sequence, labels)
|
| 63 |
+
classifier = pipeline("zero-shot-classification",
|
| 64 |
+
#hypothesis_template=hypothesis_templates[lang],
|
| 65 |
+
model=models[lang])
|
| 66 |
+
response = classifier(sequence, label_clean, multi_class=True)
|
| 67 |
+
|
| 68 |
predicted_labels = response['labels']
|
| 69 |
predicted_scores = response['scores']
|
| 70 |
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
|
| 71 |
+
print("Date:{}, Sequence:{}, Labels: {}".format(
|
| 72 |
str(datetime.datetime.now()),
|
| 73 |
sequence,
|
| 74 |
+
predicted_labels))
|
| 75 |
+
|
| 76 |
return clean_output
|
| 77 |
|
| 78 |
example_text1="Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september."
|
|
|
|
| 81 |
example_labels2="helse,sport,religion, mat"
|
| 82 |
|
| 83 |
iface = gr.Interface(
|
| 84 |
+
title="Multilingual Multi-label Zero-shot Classification",
|
| 85 |
+
description="Currently supported languages are English, German, Spanish, Italian, Russian, Norsk.",
|
| 86 |
fn=sequence_to_classify,
|
| 87 |
+
inputs=[gr.inputs.Textbox(lines=20,
|
| 88 |
+
label="Please enter the text you would like to classify...",
|
| 89 |
placeholder="Text here..."),
|
| 90 |
+
gr.inputs.Textbox(lines=5,
|
| 91 |
+
label="Possible candidate labels (separated by comma)...",
|
| 92 |
+
placeholder="laLels here...")],
|
| 93 |
+
outputs=gr.outputs.Label(num_top_classes=5),
|
| 94 |
capture_session=True,
|
| 95 |
+
#interpretation="default",
|
| 96 |
+
examples=[
|
| 97 |
[example_text1, example_labels1],
|
| 98 |
[example_text2, example_labels2]
|
| 99 |
])
|
requirements.txt
CHANGED
|
@@ -2,3 +2,4 @@ transformers
|
|
| 2 |
sentence-transformers
|
| 3 |
torch
|
| 4 |
langdetect
|
|
|
|
|
|
| 2 |
sentence-transformers
|
| 3 |
torch
|
| 4 |
langdetect
|
| 5 |
+
|