aagamjtdev commited on
Commit
caca294
Β·
1 Parent(s): 77ead37

correction

Browse files
Files changed (1) hide show
  1. HF_LayoutLM_with_Passage.py +8 -488
HF_LayoutLM_with_Passage.py CHANGED
@@ -1,488 +1,3 @@
1
- # import json
2
- # import argparse
3
- # import os
4
- # import random
5
- # import numpy as np
6
- # import torch
7
- # import torch.nn as nn
8
- # from torch.utils.data import Dataset, DataLoader, random_split
9
- # from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
10
- # from TorchCRF import CRF
11
- # from torch.optim import AdamW
12
- # from tqdm import tqdm # Keep for evaluate
13
- # from sklearn.metrics import precision_recall_fscore_support
14
- # import fitz # PyMuPDF
15
- # import pytesseract
16
- # from PIL import Image
17
- # from pdf2image import convert_from_path
18
- #
19
- # # --- Configuration for Augmentation ---
20
- # MAX_BBOX_DIMENSION = 999
21
- # MAX_SHIFT = 30
22
- # AUGMENTATION_FACTOR = 1
23
- #
24
- #
25
- # # -------------------------------------
26
- #
27
- #
28
- # # -------------------------
29
- # # Step 1: Preprocessing (Label Studio β†’ BIO + bboxes)
30
- # # -------------------------
31
- # def preprocess_labelstudio(input_path, output_path):
32
- # with open(input_path, "r", encoding="utf-8") as f:
33
- # data = json.load(f)
34
- #
35
- # processed = []
36
- # total_items = len(data)
37
- # print(f"πŸ”„ Starting preprocessing of {total_items} documents...")
38
- #
39
- # for i, item in enumerate(data):
40
- # words = item["data"]["original_words"]
41
- # bboxes = item["data"]["original_bboxes"]
42
- # labels = ["O"] * len(words)
43
- #
44
- # if "annotations" in item:
45
- # for ann in item["annotations"]:
46
- # for res in ann["result"]:
47
- # # Check if the result item is a span annotation
48
- # if "value" in res and "labels" in res["value"]:
49
- # text = res["value"]["text"]
50
- # tag = res["value"]["labels"][0]
51
- # # Some tokenizers may split words, so we must find a consecutive word match.
52
- # text_tokens = text.split()
53
- #
54
- # for j in range(len(words) - len(text_tokens) + 1):
55
- # if words[j:j + len(text_tokens)] == text_tokens:
56
- # labels[j] = f"B-{tag}"
57
- # for k in range(1, len(text_tokens)):
58
- # labels[j + k] = f"I-{tag}"
59
- # break # Move to next annotation if a match is found
60
- #
61
- # processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
62
- #
63
- # # --- HEARTBEAT LOGGING ---
64
- # if (i + 1) % 50 == 0:
65
- # print(f"--- HEARTBEAT: Preprocessed {i + 1}/{total_items} documents ---")
66
- # # -------------------------
67
- #
68
- # print(f"βœ… Preprocessed data saved to {output_path}")
69
- # return output_path
70
- #
71
- #
72
- # # -------------------------
73
- # # Step 1.5: Bounding Box Augmentation
74
- # # -------------------------
75
- #
76
- # def translate_bbox(bbox, shift_x, shift_y):
77
- # """
78
- # Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
79
- # and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
80
- # """
81
- # x_min, y_min, x_max, y_max = bbox
82
- #
83
- # new_x_min = x_min + shift_x
84
- # new_y_min = y_min + shift_y
85
- # new_x_max = x_max + shift_x
86
- # new_y_max = y_max + shift_y
87
- #
88
- # # Clamp the new coordinates
89
- # new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
90
- # new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
91
- # new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
92
- # new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
93
- #
94
- # # Safety check
95
- # if new_x_min > new_x_max: new_x_min = new_x_max
96
- # if new_y_min > new_y_max: new_y_min = new_y_max
97
- #
98
- # return [new_x_min, new_y_min, new_x_max, new_y_max]
99
- #
100
- #
101
- # def augment_sample(sample):
102
- # """
103
- # Generates a new sample by translating all bounding boxes.
104
- # """
105
- # shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
106
- # shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
107
- #
108
- # new_sample = sample.copy()
109
- #
110
- # # Ensure tokens and labels are copied (they remain unchanged)
111
- # new_sample["tokens"] = sample["tokens"]
112
- # new_sample["labels"] = sample["labels"]
113
- #
114
- # # Translate all bounding boxes
115
- # new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
116
- # new_sample["bboxes"] = new_bboxes
117
- #
118
- # return new_sample
119
- #
120
- #
121
- # def augment_and_save_dataset(input_json_path, output_json_path):
122
- # """
123
- # Loads preprocessed data, performs augmentation, and saves the result.
124
- # """
125
- # print(f"πŸ”„ Loading preprocessed data from {input_json_path} for augmentation...")
126
- # with open(input_json_path, 'r', encoding="utf-8") as f:
127
- # training_data = json.load(f)
128
- #
129
- # augmented_data = []
130
- # original_count = len(training_data)
131
- #
132
- # print(f"πŸ”„ Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
133
- #
134
- # for i, original_sample in enumerate(training_data):
135
- # # 1. Add the original sample
136
- # augmented_data.append(original_sample)
137
- #
138
- # # 2. Generate augmented samples
139
- # for _ in range(AUGMENTATION_FACTOR):
140
- # if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
141
- # augmented_data.append(augment_sample(original_sample))
142
- # else:
143
- # print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
144
- #
145
- # # --- HEARTBEAT LOGGING ---
146
- # if (i + 1) % 50 == 0:
147
- # print(f"--- HEARTBEAT: Augmented {i + 1}/{original_count} original documents ---")
148
- # # -------------------------
149
- #
150
- # augmented_count = len(augmented_data)
151
- # print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
152
- #
153
- # # Save the augmented dataset
154
- # with open(output_json_path, 'w', encoding="utf-8") as f:
155
- # json.dump(augmented_data, f, indent=2, ensure_ascii=False)
156
- #
157
- # print(f"βœ… Augmented data saved to {output_json_path}")
158
- # return output_json_path
159
- #
160
- #
161
- # # -------------------------
162
- # # Step 2: Dataset Class (Unchanged)
163
- # # -------------------------
164
- # class LayoutDataset(Dataset):
165
- # def __init__(self, json_path, tokenizer, label2id, max_len=512):
166
- # with open(json_path, "r", encoding="utf-8") as f:
167
- # self.data = json.load(f)
168
- # self.tokenizer = tokenizer
169
- # self.label2id = label2id
170
- # self.max_len = max_len
171
- #
172
- # def __len__(self):
173
- # return len(self.data)
174
- #
175
- # def __getitem__(self, idx):
176
- # item = self.data[idx]
177
- # words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
178
- #
179
- # # Tokenize
180
- # encodings = self.tokenizer(
181
- # words,
182
- # boxes=bboxes,
183
- # padding="max_length",
184
- # truncation=True,
185
- # max_length=self.max_len,
186
- # return_offsets_mapping=True,
187
- # return_tensors="pt"
188
- # )
189
- #
190
- # # Align labels to word pieces
191
- # word_ids = encodings.word_ids(batch_index=0)
192
- # label_ids = []
193
- # for word_id in word_ids:
194
- # if word_id is None:
195
- # label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
196
- # else:
197
- # label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
198
- #
199
- # encodings.pop("offset_mapping")
200
- # encodings["labels"] = torch.tensor(label_ids)
201
- #
202
- # return {key: val.squeeze(0) for key, val in encodings.items()}
203
- #
204
- #
205
- # # -------------------------
206
- # # Step 3: Model Architecture (Unchanged)
207
- # # -------------------------
208
- # class LayoutLMv3CRF(nn.Module):
209
- # def __init__(self, model_name, num_labels):
210
- # super().__init__()
211
- # self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
212
- # self.dropout = nn.Dropout(0.1)
213
- # self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
214
- # self.crf = CRF(num_labels)
215
- #
216
- # def forward(self, input_ids, bbox, attention_mask, labels=None):
217
- # outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
218
- # sequence_output = self.dropout(outputs.last_hidden_state)
219
- # emissions = self.classifier(sequence_output)
220
- #
221
- # if labels is not None:
222
- # # Training mode: calculate loss
223
- # log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
224
- # return -log_likelihood.mean()
225
- # else:
226
- # # Inference mode: decode best path
227
- # best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
228
- # return best_paths
229
- #
230
- #
231
- # # -------------------------
232
- # # Step 4: Training + Evaluation (Modified for Verbose Logging)
233
- # # -------------------------
234
- # def train_one_epoch(model, dataloader, optimizer, device):
235
- # model.train()
236
- # total_loss = 0
237
- #
238
- # # Removed tqdm here to ensure cleaner log streaming to Gradio.
239
- # for batch_idx, batch in enumerate(dataloader):
240
- # batch = {k: v.to(device) for k, v in batch.items()}
241
- # labels = batch.pop("labels")
242
- # optimizer.zero_grad()
243
- # loss = model(**batch, labels=labels)
244
- # loss.backward()
245
- # optimizer.step()
246
- # total_loss += loss.item()
247
- #
248
- # # VERBOSE LOGGING: Print batch progress every 5 batches to keep the Gradio connection alive
249
- # if (batch_idx + 1) % 5 == 0:
250
- # print(f"| Epoch Progress | Batch {batch_idx + 1}/{len(dataloader)} | Current Batch Loss: {loss.item():.4f}")
251
- #
252
- # return total_loss / len(dataloader)
253
- #
254
- #
255
- # def evaluate(model, dataloader, device, id2label):
256
- # model.eval()
257
- # all_preds, all_labels = [], []
258
- # with torch.no_grad():
259
- # for batch in tqdm(dataloader, desc="Evaluating"):
260
- # batch = {k: v.to(device) for k, v in batch.items()}
261
- # labels = batch.pop("labels").cpu().numpy()
262
- # preds = model(**batch)
263
- # for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
264
- # valid = mask == 1
265
- # l = l[valid].tolist()
266
- # all_labels.extend(l)
267
- # all_preds.extend(p[:len(l)])
268
- #
269
- # # Exclude the "O" label and other special tokens if necessary, but using 'micro' average
270
- # # on all valid tokens is typically fine for the initial evaluation.
271
- # precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
272
- # return precision, recall, f1
273
- #
274
- #
275
- # # -------------------------
276
- # # Step 5: Main Pipeline (Training) - MODIFIED LABELS
277
- # # -------------------------
278
- # def main(args):
279
- # # LABELS UPDATED: Added SECTION_HEADING and PASSAGE
280
- # labels = [
281
- # "O",
282
- # "B-QUESTION", "I-QUESTION",
283
- # "B-OPTION", "I-OPTION",
284
- # "B-ANSWER", "I-ANSWER",
285
- # "B-SECTION_HEADING", "I-SECTION_HEADING",
286
- # "B-PASSAGE", "I-PASSAGE"
287
- # ]
288
- # label2id = {l: i for i, l in enumerate(labels)}
289
- # id2label = {i: l for l, i in label2id.items()}
290
- #
291
- # # 1. Preprocess and save the initial training data
292
- # print("\n--- START PHASE: PREPROCESSING ---")
293
- # initial_bio_json = "training_data_bio_bboxes.json"
294
- # preprocess_labelstudio(args.input, initial_bio_json)
295
- #
296
- # # 2. Augment the dataset with translated bboxes
297
- # print("\n--- START PHASE: AUGMENTATION ---")
298
- # augmented_bio_json = "augmented_training_data_bio_bboxes.json"
299
- # final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
300
- #
301
- # # Clean up the intermediary file (optional)
302
- # # os.remove(initial_bio_json)
303
- #
304
- # # 3. Load and split augmented dataset
305
- # print("\n--- START PHASE: MODEL/DATASET SETUP ---")
306
- # tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
307
- # dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
308
- # val_size = int(0.2 * len(dataset))
309
- # train_size = len(dataset) - val_size
310
- #
311
- # # Use a fixed seed for reproducibility in split
312
- # torch.manual_seed(42)
313
- # train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
314
- # train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
315
- # val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
316
- # print(f"Dataset split: Train samples: {train_size}, Validation samples: {val_size}")
317
- #
318
- # # 4. Initialize and load model
319
- # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
320
- # print(f"Using device: {device}")
321
- # # Num_labels is based on the updated 'labels' list
322
- # model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
323
- # ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
324
- # os.makedirs("checkpoints", exist_ok=True)
325
- # if os.path.exists(ckpt_path):
326
- # # NOTE: Loading an old checkpoint will likely fail now because num_labels has changed,
327
- # # unless the old checkpoint had the *exact* same number of labels.
328
- # # It is recommended to start training from scratch.
329
- # # print(f"πŸ”„ Loading checkpoint from {ckpt_path}")
330
- # # model.load_state_dict(torch.load(ckpt_path, map_location=device))
331
- # print(f"⚠️ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
332
- #
333
- # optimizer = AdamW(model.parameters(), lr=args.lr)
334
- #
335
- # # 5. Training loop
336
- # for epoch in range(args.epochs):
337
- # print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
338
- # avg_loss = train_one_epoch(model, train_loader, optimizer, device)
339
- #
340
- # print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
341
- # precision, recall, f1 = evaluate(model, val_loader, device, id2label)
342
- #
343
- # print(
344
- # f"Epoch {epoch + 1}/{args.epochs} | Avg Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
345
- # torch.save(model.state_dict(), ckpt_path)
346
- # print(f"πŸ’Ύ Model saved at {ckpt_path}")
347
- #
348
- #
349
- # def run_inference(pdf_path, model_path, output_path):
350
- # # LABELS UPDATED: Added SECTION_HEADING and PASSAGE (Must match main)
351
- # labels = [
352
- # "O",
353
- # "B-QUESTION", "I-QUESTION",
354
- # "B-OPTION", "I-OPTION",
355
- # "B-ANSWER", "I-ANSWER",
356
- # "B-SECTION_HEADING", "I-SECTION_HEADING",
357
- # "B-PASSAGE", "I-PASSAGE"
358
- # ]
359
- # label2id = {l: i for i, l in enumerate(labels)}
360
- # id2label = {i: l for l, i in label2id.items()}
361
- # tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
362
- #
363
- # # Load the trained model
364
- # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
365
- # model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
366
- # try:
367
- # model.load_state_dict(torch.load(model_path, map_location=device))
368
- # except Exception as e:
369
- # print(
370
- # f"❌ Error loading model state: {e}. Ensure the model at {model_path} has been successfully trained with the new labels.")
371
- # return
372
- #
373
- # model.eval()
374
- #
375
- # # Process PDF with OCR
376
- # try:
377
- # doc = fitz.open(pdf_path)
378
- # except Exception as e:
379
- # print(f"❌ Error opening PDF: {e}")
380
- # return
381
- #
382
- # all_predictions = []
383
- # tesseract_config = '--psm 6'
384
- #
385
- # for page_num in range(len(doc)):
386
- # page = doc.load_page(page_num)
387
- #
388
- # # Get a high-resolution image of the page for Tesseract
389
- # pix = page.get_pixmap(dpi=300)
390
- # img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
391
- #
392
- # # Get page dimensions from PyMuPDF
393
- # page_width, page_height = page.bound().width, page.bound().height
394
- #
395
- # # Get OCR data (words and bboxes)
396
- # ocr_data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT, config=tesseract_config)
397
- # words = [word for word in ocr_data['text'] if word.strip()]
398
- #
399
- # # Skip empty pages
400
- # if not words:
401
- # continue
402
- #
403
- # # Get the scaling factors from the image resolution to the PDF's native resolution
404
- # x_scale = page_width / pix.width
405
- # y_scale = page_height / pix.height
406
- #
407
- # # Create original pixel bboxes
408
- # bboxes_raw = [[
409
- # ocr_data['left'][i],
410
- # ocr_data['top'][i],
411
- # ocr_data['left'][i] + ocr_data['width'][i],
412
- # ocr_data['top'][i] + ocr_data['height'][i]
413
- # ] for i in range(len(ocr_data['text'])) if ocr_data['text'][i].strip()]
414
- #
415
- # # Normalize bboxes to 0-1000 scale using the correct scaling factors
416
- # normalized_bboxes = [[
417
- # int(1000 * (b[0] * x_scale) / page_width),
418
- # int(1000 * (b[1] * y_scale) / page_height),
419
- # int(1000 * (b[2] * x_scale) / page_width),
420
- # int(1000 * (b[3] * y_scale) / page_height)
421
- # ] for b in bboxes_raw]
422
- #
423
- # # Tokenize and run inference
424
- # inputs = tokenizer(words, boxes=normalized_bboxes, return_tensors="pt", truncation=True).to(device)
425
- #
426
- # with torch.no_grad():
427
- # # The model is run on the normalized bboxes
428
- # preds = model(**inputs)
429
- #
430
- # # Align predictions back to words
431
- # word_ids = inputs.word_ids(batch_index=0)
432
- # final_preds = []
433
- # previous_word_idx = None
434
- # for idx, word_id in enumerate(word_ids):
435
- # if word_id is not None and word_id != previous_word_idx:
436
- # # The model returns a list of predicted classes for each token
437
- # final_preds.append(id2label[preds[0][idx]])
438
- # previous_word_idx = word_id
439
- #
440
- # # Prepare structured output
441
- # page_results = []
442
- # # Tesseract returns word list that is shorter than ocr_data if it contains empty strings.
443
- # # We need to use the cleaned 'words' list and its corresponding filtered bboxes.
444
- # # Note: We must ensure that the word and bbox lists passed to tokenizer and the filtered
445
- # # final_preds list are all correctly aligned with the original ocr_data indices.
446
- # # Since 'words' and 'bboxes_raw' are filtered exactly the same way (by word.strip()),
447
- # # and 'final_preds' is aligned back to 'words', we can zip them.
448
- # for word, bbox, label in zip(words, bboxes_raw, final_preds):
449
- # page_results.append({
450
- # "word": word,
451
- # "bbox": bbox,
452
- # "predicted_label": label
453
- # })
454
- # all_predictions.extend(page_results)
455
- #
456
- # doc.close()
457
- # with open(output_path, "w") as f:
458
- # json.dump(all_predictions, f, indent=2, ensure_ascii=False)
459
- # print(f"βœ… Inference complete. Predictions saved to {output_path}")
460
- #
461
- #
462
- # # -------------------------
463
- # # Step 7: Main Execution (Unchanged)
464
- # # -------------------------
465
- # if __name__ == "__main__":
466
- # parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
467
- # parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
468
- # help="Select mode: 'train' or 'infer'")
469
- # parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
470
- # parser.add_argument("--batch_size", type=int, default=4)
471
- # parser.add_argument("--epochs", type=int, default=5)
472
- # parser.add_argument("--lr", type=float, default=5e-5)
473
- # parser.add_argument("--max_len", type=int, default=512)
474
- # args = parser.parse_args()
475
- #
476
- # if args.mode == "train":
477
- # if not args.input:
478
- # parser.error("--input is required for 'train' mode.")
479
- # main(args)
480
- # elif args.mode == "infer":
481
- # if not args.input:
482
- # parser.error("--input is required for 'infer' mode.")
483
- # # NOTE: The model path here should ideally match the ckpt_path in main: checkpoints/layoutlmv3_crf_passage.pth
484
- # run_inference(args.input, "checkpoints/layoutlmv3_crf_new_passage.pth", "inference_predictions.json")
485
-
486
 
487
  import json
488
  import argparse
@@ -688,7 +203,8 @@ class LayoutDataset(Dataset):
688
  class LayoutLMv3CRF(nn.Module):
689
  def __init__(self, model_name, num_labels):
690
  super().__init__()
691
- self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
 
692
  self.dropout = nn.Dropout(0.1)
693
  self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
694
  self.crf = CRF(num_labels)
@@ -786,7 +302,10 @@ def main(args):
786
 
787
  # 3. Load and split augmented dataset
788
  print("\n--- START PHASE: MODEL/DATASET SETUP ---")
789
- tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
 
 
 
790
  dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
791
  val_size = int(0.2 * len(dataset))
792
  train_size = len(dataset) - val_size
@@ -801,7 +320,8 @@ def main(args):
801
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
802
  print(f"Using device: {device}")
803
  # Num_labels is based on the updated 'labels' list
804
- model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
 
805
  ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
806
  os.makedirs("checkpoints", exist_ok=True)
807
  if os.path.exists(ckpt_path):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  import json
3
  import argparse
 
203
  class LayoutLMv3CRF(nn.Module):
204
  def __init__(self, model_name, num_labels):
205
  super().__init__()
206
+ # self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
207
+ self.layoutlm = LayoutLMv3Model.from_pretrained("heerjtdev/edugenius")
208
  self.dropout = nn.Dropout(0.1)
209
  self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
210
  self.crf = CRF(num_labels)
 
302
 
303
  # 3. Load and split augmented dataset
304
  print("\n--- START PHASE: MODEL/DATASET SETUP ---")
305
+ MODEL_ID = "heerjtdev/edugenius"
306
+ # tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
307
+ tokenizer = LayoutLMv3TokenizerFast.from_pretrained(MODEL_ID)
308
+
309
  dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
310
  val_size = int(0.2 * len(dataset))
311
  train_size = len(dataset) - val_size
 
320
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
321
  print(f"Using device: {device}")
322
  # Num_labels is based on the updated 'labels' list
323
+ # model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
324
+ model = LayoutLMv3CRF(MODEL_ID, num_labels=len(labels)).to(device)
325
  ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
326
  os.makedirs("checkpoints", exist_ok=True)
327
  if os.path.exists(ckpt_path):