aagamjtdev commited on
Commit
9c534b4
·
1 Parent(s): 40e0962

small change in augmentation

Browse files
Files changed (1) hide show
  1. HF_LayoutLM_with_Passage.py +424 -3
HF_LayoutLM_with_Passage.py CHANGED
@@ -365,6 +365,403 @@
365
  # main(args)
366
 
367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
  import json
369
  import argparse
370
  import os
@@ -382,7 +779,7 @@ from tqdm import tqdm
382
  from sklearn.metrics import precision_recall_fscore_support
383
 
384
  # --- Configuration for Augmentation ---
385
- MAX_BBOX_DIMENSION = 1000
386
  MAX_SHIFT = 30
387
  AUGMENTATION_FACTOR = 1
388
 
@@ -411,6 +808,30 @@ def preprocess_labelstudio(input_path, output_path):
411
  bboxes = item["data"]["original_bboxes"]
412
  labels = ["O"] * len(words)
413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
  if "annotations" in item:
415
  for ann in item["annotations"]:
416
  for res in ann["result"]:
@@ -428,7 +849,7 @@ def preprocess_labelstudio(input_path, output_path):
428
  labels[i + j] = f"I-{tag}"
429
  break # Move to next annotation if a match is found
430
 
431
- processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
432
 
433
  with open(output_path, "w", encoding="utf-8") as f:
434
  json.dump(processed, f, indent=2, ensure_ascii=False)
@@ -453,7 +874,7 @@ def translate_bbox(bbox, shift_x, shift_y):
453
  new_x_max = x_max + shift_x
454
  new_y_max = y_max + shift_y
455
 
456
- # Clamp the new coordinates
457
  new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
458
  new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
459
  new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
 
365
  # main(args)
366
 
367
 
368
+ # import json
369
+ # import argparse
370
+ # import os
371
+ # import random
372
+ # import torch
373
+ # import torch.nn as nn
374
+ # from torch.utils.data import Dataset, DataLoader, random_split
375
+ # # Using LayoutLMv3TokenizerFast, LayoutLMv3Model
376
+ # from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
377
+ # from transformers.utils import cached_file
378
+ # from safetensors.torch import load_file
379
+ # from TorchCRF import CRF
380
+ # from torch.optim import AdamW
381
+ # from tqdm import tqdm
382
+ # from sklearn.metrics import precision_recall_fscore_support
383
+ #
384
+ # # --- Configuration for Augmentation ---
385
+ # MAX_BBOX_DIMENSION = 1000
386
+ # MAX_SHIFT = 30
387
+ # AUGMENTATION_FACTOR = 1
388
+ #
389
+ # # -------------------------------------
390
+ #
391
+ # # --- Hugging Face Model ID ---
392
+ # HF_MODEL_ID = "heerjtdev/edugenius"
393
+ #
394
+ #
395
+ # # -----------------------------
396
+ #
397
+ #
398
+ # # -------------------------
399
+ # # Step 1: Preprocessing (Label Studio → BIO + bboxes)
400
+ # # -------------------------
401
+ # def preprocess_labelstudio(input_path, output_path):
402
+ # with open(input_path, "r", encoding="utf-8") as f:
403
+ # data = json.load(f)
404
+ #
405
+ # processed = []
406
+ # total_items = len(data) # Added for potential verbose logging
407
+ # print(f"🔄 Starting preprocessing of {total_items} documents...")
408
+ #
409
+ # for item in data:
410
+ # words = item["data"]["original_words"]
411
+ # bboxes = item["data"]["original_bboxes"]
412
+ # labels = ["O"] * len(words)
413
+ #
414
+ # if "annotations" in item:
415
+ # for ann in item["annotations"]:
416
+ # for res in ann["result"]:
417
+ # # Check if the result item is a span annotation
418
+ # if "value" in res and "labels" in res["value"]:
419
+ # text = res["value"]["text"]
420
+ # tag = res["value"]["labels"][0]
421
+ # # Some tokenizers may split words, so we must find a consecutive word match.
422
+ # text_tokens = text.split()
423
+ #
424
+ # for i in range(len(words) - len(text_tokens) + 1):
425
+ # if words[i:i + len(text_tokens)] == text_tokens:
426
+ # labels[i] = f"B-{tag}"
427
+ # for j in range(1, len(text_tokens)):
428
+ # labels[i + j] = f"I-{tag}"
429
+ # break # Move to next annotation if a match is found
430
+ #
431
+ # processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
432
+ #
433
+ # with open(output_path, "w", encoding="utf-8") as f:
434
+ # json.dump(processed, f, indent=2, ensure_ascii=False)
435
+ #
436
+ # print(f"✅ Preprocessed data saved to {output_path}")
437
+ # return output_path
438
+ #
439
+ #
440
+ # # -------------------------
441
+ # # Step 1.5: Bounding Box Augmentation
442
+ # # -------------------------
443
+ #
444
+ # def translate_bbox(bbox, shift_x, shift_y):
445
+ # """
446
+ # Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
447
+ # and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
448
+ # """
449
+ # x_min, y_min, x_max, y_max = bbox
450
+ #
451
+ # new_x_min = x_min + shift_x
452
+ # new_y_min = y_min + shift_y
453
+ # new_x_max = x_max + shift_x
454
+ # new_y_max = y_max + shift_y
455
+ #
456
+ # # Clamp the new coordinates
457
+ # new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
458
+ # new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
459
+ # new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
460
+ # new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
461
+ #
462
+ # # Safety check
463
+ # if new_x_min > new_x_max: new_x_min = new_x_max
464
+ # if new_y_min > new_y_max: new_y_min = new_y_max
465
+ #
466
+ # return [new_x_min, new_y_min, new_x_max, new_y_max]
467
+ #
468
+ #
469
+ # def augment_sample(sample):
470
+ # """
471
+ # Generates a new sample by translating all bounding boxes.
472
+ # """
473
+ # shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
474
+ # shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
475
+ #
476
+ # new_sample = sample.copy()
477
+ #
478
+ # # Ensure tokens and labels are copied (they remain unchanged)
479
+ # new_sample["tokens"] = sample["tokens"]
480
+ # new_sample["labels"] = sample["labels"]
481
+ #
482
+ # # Translate all bounding boxes
483
+ # new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
484
+ # new_sample["bboxes"] = new_bboxes
485
+ #
486
+ # return new_sample
487
+ #
488
+ #
489
+ # def augment_and_save_dataset(input_json_path, output_json_path):
490
+ # """
491
+ # Loads preprocessed data, performs augmentation, and saves the result.
492
+ # """
493
+ # print(f"🔄 Loading preprocessed data from {input_json_path} for augmentation...")
494
+ # with open(input_json_path, 'r', encoding="utf-8") as f:
495
+ # training_data = json.load(f)
496
+ #
497
+ # augmented_data = []
498
+ # original_count = len(training_data)
499
+ #
500
+ # print(f"🔄 Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
501
+ #
502
+ # for i, original_sample in enumerate(training_data):
503
+ # # 1. Add the original sample
504
+ # augmented_data.append(original_sample)
505
+ #
506
+ # # 2. Generate augmented samples
507
+ # for _ in range(AUGMENTATION_FACTOR):
508
+ # if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
509
+ # augmented_data.append(augment_sample(original_sample))
510
+ # else:
511
+ # print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
512
+ #
513
+ # augmented_count = len(augmented_data)
514
+ # print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
515
+ #
516
+ # # Save the augmented dataset
517
+ # with open(output_json_path, 'w', encoding="utf-8") as f:
518
+ # json.dump(augmented_data, f, indent=2, ensure_ascii=False)
519
+ #
520
+ # print(f"✅ Augmented data saved to {output_json_path}")
521
+ # return output_json_path
522
+ #
523
+ #
524
+ # # -------------------------
525
+ # # Step 2: Dataset Class
526
+ # # -------------------------
527
+ # class LayoutDataset(Dataset):
528
+ # def __init__(self, json_path, tokenizer, label2id, max_len=512):
529
+ # with open(json_path, "r", encoding="utf-8") as f:
530
+ # self.data = json.load(f)
531
+ # self.tokenizer = tokenizer
532
+ # self.label2id = label2id
533
+ # self.max_len = max_len
534
+ #
535
+ # def __len__(self):
536
+ # return len(self.data)
537
+ #
538
+ # def __getitem__(self, idx):
539
+ # item = self.data[idx]
540
+ # words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
541
+ #
542
+ # # Tokenize
543
+ # encodings = self.tokenizer(
544
+ # words,
545
+ # boxes=bboxes,
546
+ # padding="max_length",
547
+ # truncation=True,
548
+ # max_length=self.max_len,
549
+ # return_offsets_mapping=True,
550
+ # return_tensors="pt"
551
+ # )
552
+ #
553
+ # # Align labels to word pieces
554
+ # word_ids = encodings.word_ids(batch_index=0)
555
+ # label_ids = []
556
+ # for word_id in word_ids:
557
+ # if word_id is None:
558
+ # label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
559
+ # else:
560
+ # label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
561
+ #
562
+ # encodings.pop("offset_mapping")
563
+ # encodings["labels"] = torch.tensor(label_ids)
564
+ #
565
+ # return {key: val.squeeze(0) for key, val in encodings.items()}
566
+ #
567
+ #
568
+ # # -------------------------
569
+ # # Step 3: Model Architecture (PATCHED TO LOAD WEIGHTS CORRECTLY)
570
+ # # -------------------------
571
+ # class LayoutLMv3CRF(nn.Module):
572
+ # def __init__(self, model_name, num_labels, device):
573
+ # super().__init__()
574
+ #
575
+ # # 1. Initialize the LayoutLMv3 model using the base class
576
+ # # We start by initializing from the base configuration to ensure all weights are present
577
+ # self.layoutlm = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base")
578
+ #
579
+ # # 2. Try to load the fine-tuned weights from the Hugging Face Hub/Cache
580
+ # try:
581
+ # # This resolves the path to the downloaded model.safetensors in the cache
582
+ # # Assumes you have renamed your file on the Hugging Face Hub to 'model.safetensors'
583
+ # weights_path = cached_file(model_name, "model.safetensors")
584
+ # fine_tuned_weights = load_file(weights_path)
585
+ #
586
+ # # 3. Strip the Mismatching Prefix (Assuming 'layoutlm.' prefix from a previous wrapper)
587
+ # new_state_dict = {}
588
+ # prefix_to_strip = "layoutlm."
589
+ #
590
+ # for key, value in fine_tuned_weights.items():
591
+ # if key.startswith(prefix_to_strip):
592
+ # new_key = key[len(prefix_to_strip):]
593
+ # new_state_dict[new_key] = value
594
+ # else:
595
+ # new_state_dict[key] = value
596
+ #
597
+ # # 4. Load the fixed state dictionary into the LayoutLMv3Model
598
+ # # strict=False allows us to ignore classifier/CRF weights not in LayoutLMv3Model
599
+ # print("🔄 Successfully loaded and stripped keys. Loading base LayoutLMv3 weights...")
600
+ #
601
+ # # Load only the weights for the transformer body
602
+ # missing_keys, unexpected_keys = self.layoutlm.load_state_dict(new_state_dict, strict=False)
603
+ #
604
+ # print(f"Weights loading done: {len(missing_keys)} missing, {len(unexpected_keys)} unexpected keys.")
605
+ #
606
+ # except Exception as e:
607
+ # print(f"❌ Fine-tuned weights could not be loaded directly and mapped. Starting with random weights.")
608
+ # print(f"Error: {e}")
609
+ # # Fallback: Load the LayoutLMv3 component directly from the Hub ID (will result in random weights for layers)
610
+ # self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
611
+ #
612
+ # # 5. Initialize the new heads (CRF layer and Classifier)
613
+ # self.dropout = nn.Dropout(0.1)
614
+ # self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
615
+ # self.crf = CRF(num_labels)
616
+ #
617
+ # def forward(self, input_ids, bbox, attention_mask, labels=None):
618
+ # outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
619
+ # sequence_output = self.dropout(outputs.last_hidden_state)
620
+ # emissions = self.classifier(sequence_output)
621
+ #
622
+ # if labels is not None:
623
+ # # Training mode: calculate loss
624
+ # log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
625
+ # return -log_likelihood.mean()
626
+ # else:
627
+ # # Inference mode: decode best path
628
+ # best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
629
+ # return best_paths
630
+ #
631
+ #
632
+ # # -------------------------
633
+ # # Step 4: Training + Evaluation
634
+ # # -------------------------
635
+ # def train_one_epoch(model, dataloader, optimizer, device):
636
+ # model.train()
637
+ # total_loss = 0
638
+ # for batch in tqdm(dataloader, desc="Training"):
639
+ # batch = {k: v.to(device) for k, v in batch.items()}
640
+ # labels = batch.pop("labels")
641
+ # optimizer.zero_grad()
642
+ # loss = model(**batch, labels=labels)
643
+ # loss.backward()
644
+ # optimizer.step()
645
+ # total_loss += loss.item()
646
+ # return total_loss / len(dataloader)
647
+ #
648
+ #
649
+ # def evaluate(model, dataloader, device, id2label):
650
+ # model.eval()
651
+ # all_preds, all_labels = [], []
652
+ # with torch.no_grad():
653
+ # for batch in tqdm(dataloader, desc="Evaluating"):
654
+ # batch = {k: v.to(device) for k, v in batch.items()}
655
+ # labels = batch.pop("labels").cpu().numpy()
656
+ # # The model returns a list of lists of predicted labels in inference mode
657
+ # preds = model(**batch)
658
+ # for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
659
+ # valid = mask == 1
660
+ # l = l[valid].tolist()
661
+ # all_labels.extend(l)
662
+ # # Ensure pred length matches label length for the unmasked tokens
663
+ # all_preds.extend(p[:len(l)])
664
+ #
665
+ # # Exclude the "O" label and other special tokens if necessary, but using 'micro' average
666
+ # precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
667
+ # return precision, recall, f1
668
+ #
669
+ #
670
+ # # -------------------------
671
+ # # Step 5: Main Pipeline (Training) - MODIFIED MODEL/TOKENIZER LOADING
672
+ # # -------------------------
673
+ # def main(args):
674
+ # # LABELS UPDATED: Added SECTION_HEADING and PASSAGE
675
+ # labels = [
676
+ # "O",
677
+ # "B-QUESTION", "I-QUESTION",
678
+ # "B-OPTION", "I-OPTION",
679
+ # "B-ANSWER", "I-ANSWER",
680
+ # "B-SECTION_HEADING", "I-SECTION_HEADING",
681
+ # "B-PASSAGE", "I-PASSAGE"
682
+ # ]
683
+ # label2id = {l: i for i, l in enumerate(labels)}
684
+ # id2label = {i: l for l, i in label2id.items()}
685
+ #
686
+ # # --- SETUP: Use a temporary directory for intermediate files ---
687
+ # TEMP_DIR = "temp_intermediate_files"
688
+ # os.makedirs(TEMP_DIR, exist_ok=True)
689
+ # print(f"\n--- SETUP PHASE: Created temp directory: {TEMP_DIR} ---")
690
+ #
691
+ # # 1. Preprocess
692
+ # print("\n--- START PHASE: PREPROCESSING ---")
693
+ # initial_bio_json = os.path.join(TEMP_DIR, "training_data_bio_bboxes.json")
694
+ # preprocess_labelstudio(args.input, initial_bio_json)
695
+ #
696
+ # # 2. Augment
697
+ # print("\n--- START PHASE: AUGMENTATION ---")
698
+ # augmented_bio_json = os.path.join(TEMP_DIR, "augmented_training_data_bio_bboxes.json")
699
+ # final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
700
+ #
701
+ # # 3. Load and split augmented dataset
702
+ # print("\n--- START PHASE: MODEL/DATASET SETUP ---")
703
+ #
704
+ # # Load tokenizer from the specified Hugging Face ID
705
+ # tokenizer = LayoutLMv3TokenizerFast.from_pretrained(HF_MODEL_ID)
706
+ #
707
+ # dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
708
+ # val_size = int(0.2 * len(dataset))
709
+ # train_size = len(dataset) - val_size
710
+ #
711
+ # # Use a fixed seed for reproducibility in split
712
+ # torch.manual_seed(42)
713
+ # train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
714
+ # train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
715
+ # val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
716
+ #
717
+ # # 4. Initialize and load model
718
+ # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
719
+ # print(f"Using device: {device}")
720
+ #
721
+ # # Pass the Hugging Face ID and device to the custom model wrapper
722
+ # model = LayoutLMv3CRF(HF_MODEL_ID, num_labels=len(labels), device=device).to(device)
723
+ #
724
+ # ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
725
+ # os.makedirs("checkpoints", exist_ok=True)
726
+ # if os.path.exists(ckpt_path):
727
+ # print(f"⚠️ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
728
+ #
729
+ # optimizer = AdamW(model.parameters(), lr=args.lr)
730
+ #
731
+ # # 5. Training loop
732
+ # for epoch in range(args.epochs):
733
+ # print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
734
+ # avg_loss = train_one_epoch(model, train_loader, optimizer, device)
735
+ #
736
+ # print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
737
+ # precision, recall, f1 = evaluate(model, val_loader, device, id2label)
738
+ #
739
+ # print(
740
+ # f"Epoch {epoch + 1}/{args.epochs} | Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
741
+ # torch.save(model.state_dict(), ckpt_path)
742
+ # print(f"💾 Model saved at {ckpt_path}")
743
+ #
744
+ #
745
+ # # -------------------------
746
+ # # Step 7: Main Execution
747
+ # # -------------------------
748
+ # if __name__ == "__main__":
749
+ # parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
750
+ # parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
751
+ # help="Select mode: 'train' or 'infer'")
752
+ # parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
753
+ # parser.add_argument("--batch_size", type=int, default=4)
754
+ # parser.add_argument("--epochs", type=int, default=5)
755
+ # parser.add_argument("--lr", type=float, default=5e-5)
756
+ # parser.add_argument("--max_len", type=int, default=512)
757
+ # args = parser.parse_args()
758
+ #
759
+ # if args.mode == "train":
760
+ # if not args.input:
761
+ # parser.error("--input is required for 'train' mode.")
762
+ # main(args)
763
+
764
+
765
  import json
766
  import argparse
767
  import os
 
779
  from sklearn.metrics import precision_recall_fscore_support
780
 
781
  # --- Configuration for Augmentation ---
782
+ MAX_BBOX_DIMENSION = 1000 # Corrected to 1000 to match LayoutLMv3 requirement
783
  MAX_SHIFT = 30
784
  AUGMENTATION_FACTOR = 1
785
 
 
808
  bboxes = item["data"]["original_bboxes"]
809
  labels = ["O"] * len(words)
810
 
811
+ # --- NEW: Bounding Box Normalization/Clamping ---
812
+ # Defensively ensures all coordinates are within the [0, 1000] range
813
+ # required by LayoutLMv3's spatial position embeddings.
814
+ clamped_bboxes = []
815
+ for bbox in bboxes:
816
+ # Clamp coordinates to [0, 1000]
817
+ x_min, y_min, x_max, y_max = bbox
818
+
819
+ new_x_min = max(0, min(x_min, 1000))
820
+ new_y_min = max(0, min(y_min, 1000))
821
+ new_x_max = max(0, min(x_max, 1000))
822
+ new_y_max = max(0, min(y_max, 1000))
823
+
824
+ # Safety check: ensure min <= max (this should rarely trigger
825
+ # if the original bboxes were valid, but is good practice)
826
+ if new_x_min > new_x_max: new_x_min = new_x_max
827
+ if new_y_min > new_y_max: new_y_min = new_y_max
828
+
829
+ clamped_bboxes.append([new_x_min, new_y_min, new_x_max, new_y_max])
830
+
831
+ # Use the clamped bboxes for the rest of the pipeline
832
+ final_bboxes = clamped_bboxes
833
+ # ------------------------------------------------
834
+
835
  if "annotations" in item:
836
  for ann in item["annotations"]:
837
  for res in ann["result"]:
 
849
  labels[i + j] = f"I-{tag}"
850
  break # Move to next annotation if a match is found
851
 
852
+ processed.append({"tokens": words, "labels": labels, "bboxes": final_bboxes})
853
 
854
  with open(output_path, "w", encoding="utf-8") as f:
855
  json.dump(processed, f, indent=2, ensure_ascii=False)
 
874
  new_x_max = x_max + shift_x
875
  new_y_max = y_max + shift_y
876
 
877
+ # Clamp the new coordinates (MAX_BBOX_DIMENSION is 1000)
878
  new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
879
  new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
880
  new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))