hackerbyhobby
commited on
updated app to have user choose text or OCR
Browse files- app.py +44 -14
- app.py.jan27 → app.py.working_ocr +8 -88
app.py
CHANGED
|
@@ -21,6 +21,7 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
| 21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 23 |
|
|
|
|
| 24 |
def get_keywords_by_language(text: str):
|
| 25 |
"""
|
| 26 |
Detect language using `langdetect` and translate keywords if needed.
|
|
@@ -42,6 +43,7 @@ def get_keywords_by_language(text: str):
|
|
| 42 |
else:
|
| 43 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
| 44 |
|
|
|
|
| 45 |
def boost_probabilities(probabilities: dict, text: str):
|
| 46 |
"""
|
| 47 |
Boost probabilities based on keyword matches and presence of URLs.
|
|
@@ -52,11 +54,13 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 52 |
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
| 53 |
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
| 54 |
|
|
|
|
| 55 |
smishing_boost = 0.30 * smishing_count
|
| 56 |
other_scam_boost = 0.30 * other_scam_count
|
| 57 |
|
| 58 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 59 |
if found_urls:
|
|
|
|
| 60 |
smishing_boost += 0.35
|
| 61 |
|
| 62 |
p_smishing = probabilities.get("SMiShing", 0.0)
|
|
@@ -67,10 +71,12 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 67 |
p_other_scam += other_scam_boost
|
| 68 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 69 |
|
|
|
|
| 70 |
p_smishing = max(p_smishing, 0.0)
|
| 71 |
p_other_scam = max(p_other_scam, 0.0)
|
| 72 |
p_legit = max(p_legit, 0.0)
|
| 73 |
|
|
|
|
| 74 |
total = p_smishing + p_other_scam + p_legit
|
| 75 |
if total > 0:
|
| 76 |
p_smishing /= total
|
|
@@ -86,15 +92,23 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 86 |
"detected_lang": detected_lang
|
| 87 |
}
|
| 88 |
|
| 89 |
-
|
|
|
|
| 90 |
"""
|
| 91 |
-
Main detection function
|
|
|
|
|
|
|
| 92 |
"""
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
if not combined_text:
|
| 100 |
return {
|
|
@@ -105,19 +119,26 @@ def smishing_detector(text, image):
|
|
| 105 |
"urls_found": []
|
| 106 |
}
|
| 107 |
|
|
|
|
| 108 |
result = classifier(
|
| 109 |
sequences=combined_text,
|
| 110 |
candidate_labels=CANDIDATE_LABELS,
|
| 111 |
hypothesis_template="This message is {}."
|
| 112 |
)
|
| 113 |
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
|
|
|
|
|
|
| 114 |
boosted = boost_probabilities(original_probs, combined_text)
|
| 115 |
|
|
|
|
| 116 |
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
| 117 |
detected_lang = boosted.pop("detected_lang", "en")
|
|
|
|
|
|
|
| 118 |
final_label = max(boosted, key=boosted.get)
|
| 119 |
final_confidence = round(boosted[final_label], 3)
|
| 120 |
|
|
|
|
| 121 |
lower_text = combined_text.lower()
|
| 122 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
| 123 |
|
|
@@ -137,26 +158,35 @@ def smishing_detector(text, image):
|
|
| 137 |
"urls_found": found_urls,
|
| 138 |
}
|
| 139 |
|
|
|
|
|
|
|
| 140 |
demo = gr.Interface(
|
| 141 |
fn=smishing_detector,
|
| 142 |
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
gr.Textbox(
|
| 144 |
lines=3,
|
| 145 |
-
label="Paste Suspicious SMS Text
|
| 146 |
placeholder="Type or paste the message here..."
|
| 147 |
),
|
| 148 |
gr.Image(
|
| 149 |
type="pil",
|
| 150 |
-
label="
|
|
|
|
| 151 |
)
|
| 152 |
],
|
| 153 |
outputs="json",
|
| 154 |
-
title="SMiShing & Scam Detector
|
| 155 |
description="""
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
If
|
| 159 |
-
|
| 160 |
""",
|
| 161 |
allow_flagging="never"
|
| 162 |
)
|
|
|
|
| 21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 23 |
|
| 24 |
+
|
| 25 |
def get_keywords_by_language(text: str):
|
| 26 |
"""
|
| 27 |
Detect language using `langdetect` and translate keywords if needed.
|
|
|
|
| 43 |
else:
|
| 44 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
| 45 |
|
| 46 |
+
|
| 47 |
def boost_probabilities(probabilities: dict, text: str):
|
| 48 |
"""
|
| 49 |
Boost probabilities based on keyword matches and presence of URLs.
|
|
|
|
| 54 |
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
| 55 |
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
| 56 |
|
| 57 |
+
# Example: 30% per found keyword
|
| 58 |
smishing_boost = 0.30 * smishing_count
|
| 59 |
other_scam_boost = 0.30 * other_scam_count
|
| 60 |
|
| 61 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 62 |
if found_urls:
|
| 63 |
+
# 35% boost for Smishing if there's a URL
|
| 64 |
smishing_boost += 0.35
|
| 65 |
|
| 66 |
p_smishing = probabilities.get("SMiShing", 0.0)
|
|
|
|
| 71 |
p_other_scam += other_scam_boost
|
| 72 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 73 |
|
| 74 |
+
# Clamp to 0
|
| 75 |
p_smishing = max(p_smishing, 0.0)
|
| 76 |
p_other_scam = max(p_other_scam, 0.0)
|
| 77 |
p_legit = max(p_legit, 0.0)
|
| 78 |
|
| 79 |
+
# Re-normalize
|
| 80 |
total = p_smishing + p_other_scam + p_legit
|
| 81 |
if total > 0:
|
| 82 |
p_smishing /= total
|
|
|
|
| 92 |
"detected_lang": detected_lang
|
| 93 |
}
|
| 94 |
|
| 95 |
+
|
| 96 |
+
def smishing_detector(input_type, text, image):
|
| 97 |
"""
|
| 98 |
+
Main detection function:
|
| 99 |
+
- If input_type == "Text": use `text` as the message
|
| 100 |
+
- If input_type == "Screenshot": use OCR on `image` to get text
|
| 101 |
"""
|
| 102 |
+
if input_type == "Text":
|
| 103 |
+
# Use the pasted text
|
| 104 |
+
combined_text = text.strip() if text else ""
|
| 105 |
+
else:
|
| 106 |
+
# input_type == "Screenshot"
|
| 107 |
+
if image is not None:
|
| 108 |
+
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
| 109 |
+
combined_text = ocr_text.strip()
|
| 110 |
+
else:
|
| 111 |
+
combined_text = ""
|
| 112 |
|
| 113 |
if not combined_text:
|
| 114 |
return {
|
|
|
|
| 119 |
"urls_found": []
|
| 120 |
}
|
| 121 |
|
| 122 |
+
# Zero-shot classification
|
| 123 |
result = classifier(
|
| 124 |
sequences=combined_text,
|
| 125 |
candidate_labels=CANDIDATE_LABELS,
|
| 126 |
hypothesis_template="This message is {}."
|
| 127 |
)
|
| 128 |
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
| 129 |
+
|
| 130 |
+
# Boost logic
|
| 131 |
boosted = boost_probabilities(original_probs, combined_text)
|
| 132 |
|
| 133 |
+
# Convert to float
|
| 134 |
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
| 135 |
detected_lang = boosted.pop("detected_lang", "en")
|
| 136 |
+
|
| 137 |
+
# Final classification
|
| 138 |
final_label = max(boosted, key=boosted.get)
|
| 139 |
final_confidence = round(boosted[final_label], 3)
|
| 140 |
|
| 141 |
+
# For display
|
| 142 |
lower_text = combined_text.lower()
|
| 143 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
| 144 |
|
|
|
|
| 158 |
"urls_found": found_urls,
|
| 159 |
}
|
| 160 |
|
| 161 |
+
|
| 162 |
+
# Create a Radio for user choice + text input + image input
|
| 163 |
demo = gr.Interface(
|
| 164 |
fn=smishing_detector,
|
| 165 |
inputs=[
|
| 166 |
+
gr.Radio(
|
| 167 |
+
choices=["Text", "Screenshot"],
|
| 168 |
+
label="Choose input type",
|
| 169 |
+
value="Text", # default
|
| 170 |
+
info="Select 'Text' to paste a message, or 'Screenshot' to upload an image."
|
| 171 |
+
),
|
| 172 |
gr.Textbox(
|
| 173 |
lines=3,
|
| 174 |
+
label="Paste Suspicious SMS Text",
|
| 175 |
placeholder="Type or paste the message here..."
|
| 176 |
),
|
| 177 |
gr.Image(
|
| 178 |
type="pil",
|
| 179 |
+
label="Upload a Screenshot",
|
| 180 |
+
tool="editor"
|
| 181 |
)
|
| 182 |
],
|
| 183 |
outputs="json",
|
| 184 |
+
title="SMiShing & Scam Detector",
|
| 185 |
description="""
|
| 186 |
+
Select "Text" or "Screenshot" above.
|
| 187 |
+
- If "Text", only use the textbox.
|
| 188 |
+
- If "Screenshot", only upload an image.
|
| 189 |
+
The app will classify the message as SMiShing, Other Scam, or Legitimate.
|
| 190 |
""",
|
| 191 |
allow_flagging="never"
|
| 192 |
)
|
app.py.jan27 → app.py.working_ocr
RENAMED
|
@@ -5,22 +5,6 @@ from transformers import pipeline
|
|
| 5 |
import re
|
| 6 |
from langdetect import detect
|
| 7 |
from deep_translator import GoogleTranslator
|
| 8 |
-
import shap
|
| 9 |
-
import requests
|
| 10 |
-
import json
|
| 11 |
-
import os
|
| 12 |
-
import numpy as np
|
| 13 |
-
from shap.maskers import Text
|
| 14 |
-
|
| 15 |
-
# Patch SHAP to replace np.bool with np.bool_ dynamically
|
| 16 |
-
if hasattr(shap.maskers._text.Text, "invariants"):
|
| 17 |
-
original_invariants = shap.maskers._text.Text.invariants
|
| 18 |
-
|
| 19 |
-
def patched_invariants(self, *args):
|
| 20 |
-
# Use np.bool_ instead of the deprecated np.bool
|
| 21 |
-
return np.zeros(len(self._tokenized_s), dtype=np.bool_)
|
| 22 |
-
|
| 23 |
-
shap.maskers._text.Text.invariants = patched_invariants
|
| 24 |
|
| 25 |
# Translator instance
|
| 26 |
translator = GoogleTranslator(source="auto", target="es")
|
|
@@ -37,49 +21,6 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
| 37 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 38 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 39 |
|
| 40 |
-
# 3. SHAP Explainer Setup
|
| 41 |
-
explainer = shap.Explainer(classifier, masker=Text(tokenizer=classifier.tokenizer))
|
| 42 |
-
|
| 43 |
-
# Retrieve the Google Safe Browsing API key from the environment
|
| 44 |
-
SAFE_BROWSING_API_KEY = os.getenv("SAFE_BROWSING_API_KEY")
|
| 45 |
-
|
| 46 |
-
if not SAFE_BROWSING_API_KEY:
|
| 47 |
-
raise ValueError("Google Safe Browsing API key not found. Please set it as an environment variable in your Hugging Face Space.")
|
| 48 |
-
|
| 49 |
-
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
|
| 50 |
-
|
| 51 |
-
def check_url_with_google_safebrowsing(url):
|
| 52 |
-
"""
|
| 53 |
-
Check a URL against Google's Safe Browsing API.
|
| 54 |
-
"""
|
| 55 |
-
payload = {
|
| 56 |
-
"client": {
|
| 57 |
-
"clientId": "your-client-id",
|
| 58 |
-
"clientVersion": "1.0"
|
| 59 |
-
},
|
| 60 |
-
"threatInfo": {
|
| 61 |
-
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
|
| 62 |
-
"platformTypes": ["ANY_PLATFORM"],
|
| 63 |
-
"threatEntryTypes": ["URL"],
|
| 64 |
-
"threatEntries": [
|
| 65 |
-
{"url": url}
|
| 66 |
-
]
|
| 67 |
-
}
|
| 68 |
-
}
|
| 69 |
-
try:
|
| 70 |
-
response = requests.post(
|
| 71 |
-
SAFE_BROWSING_URL,
|
| 72 |
-
params={"key": SAFE_BROWSING_API_KEY},
|
| 73 |
-
json=payload
|
| 74 |
-
)
|
| 75 |
-
response_data = response.json()
|
| 76 |
-
if "matches" in response_data:
|
| 77 |
-
return True # URL is flagged as malicious
|
| 78 |
-
return False # URL is safe
|
| 79 |
-
except Exception as e:
|
| 80 |
-
print(f"Error checking URL with Safe Browsing API: {e}")
|
| 81 |
-
return False
|
| 82 |
-
|
| 83 |
def get_keywords_by_language(text: str):
|
| 84 |
"""
|
| 85 |
Detect language using `langdetect` and translate keywords if needed.
|
|
@@ -142,21 +83,9 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 142 |
"SMiShing": p_smishing,
|
| 143 |
"Other Scam": p_other_scam,
|
| 144 |
"Legitimate": p_legit,
|
| 145 |
-
"detected_lang": detected_lang
|
| 146 |
}
|
| 147 |
|
| 148 |
-
def explain_classification(text):
|
| 149 |
-
"""
|
| 150 |
-
Generate SHAP explanations for the classification.
|
| 151 |
-
"""
|
| 152 |
-
if not text.strip():
|
| 153 |
-
raise ValueError("Cannot generate SHAP explanations for empty text.")
|
| 154 |
-
|
| 155 |
-
shap_values = explainer([text])
|
| 156 |
-
shap.force_plot(
|
| 157 |
-
explainer.expected_value[0], shap_values[0].values[0], shap_values[0].data
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
def smishing_detector(text, image):
|
| 161 |
"""
|
| 162 |
Main detection function combining text and OCR.
|
|
@@ -173,8 +102,7 @@ def smishing_detector(text, image):
|
|
| 173 |
"label": "No text provided",
|
| 174 |
"confidence": 0.0,
|
| 175 |
"keywords_found": [],
|
| 176 |
-
"urls_found": []
|
| 177 |
-
"threat_analysis": "No URLs to analyze",
|
| 178 |
}
|
| 179 |
|
| 180 |
result = classifier(
|
|
@@ -197,14 +125,6 @@ def smishing_detector(text, image):
|
|
| 197 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
| 198 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
| 199 |
|
| 200 |
-
# Analyze URLs using Google's Safe Browsing API
|
| 201 |
-
threat_analysis = {
|
| 202 |
-
url: check_url_with_google_safebrowsing(url) for url in found_urls
|
| 203 |
-
}
|
| 204 |
-
|
| 205 |
-
# SHAP Explanation (optional for user insights)
|
| 206 |
-
explain_classification(combined_text)
|
| 207 |
-
|
| 208 |
return {
|
| 209 |
"detected_language": detected_lang,
|
| 210 |
"text_used_for_classification": combined_text,
|
|
@@ -215,7 +135,6 @@ def smishing_detector(text, image):
|
|
| 215 |
"smishing_keywords_found": found_smishing,
|
| 216 |
"other_scam_keywords_found": found_other_scam,
|
| 217 |
"urls_found": found_urls,
|
| 218 |
-
"threat_analysis": threat_analysis,
|
| 219 |
}
|
| 220 |
|
| 221 |
demo = gr.Interface(
|
|
@@ -232,14 +151,15 @@ demo = gr.Interface(
|
|
| 232 |
)
|
| 233 |
],
|
| 234 |
outputs="json",
|
| 235 |
-
title="SMiShing & Scam Detector
|
| 236 |
description="""
|
| 237 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
| 238 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
| 242 |
)
|
| 243 |
|
| 244 |
if __name__ == "__main__":
|
| 245 |
-
demo.launch()
|
|
|
|
| 5 |
import re
|
| 6 |
from langdetect import detect
|
| 7 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Translator instance
|
| 10 |
translator = GoogleTranslator(source="auto", target="es")
|
|
|
|
| 21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def get_keywords_by_language(text: str):
|
| 25 |
"""
|
| 26 |
Detect language using `langdetect` and translate keywords if needed.
|
|
|
|
| 83 |
"SMiShing": p_smishing,
|
| 84 |
"Other Scam": p_other_scam,
|
| 85 |
"Legitimate": p_legit,
|
| 86 |
+
"detected_lang": detected_lang
|
| 87 |
}
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
def smishing_detector(text, image):
|
| 90 |
"""
|
| 91 |
Main detection function combining text and OCR.
|
|
|
|
| 102 |
"label": "No text provided",
|
| 103 |
"confidence": 0.0,
|
| 104 |
"keywords_found": [],
|
| 105 |
+
"urls_found": []
|
|
|
|
| 106 |
}
|
| 107 |
|
| 108 |
result = classifier(
|
|
|
|
| 125 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
| 126 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
return {
|
| 129 |
"detected_language": detected_lang,
|
| 130 |
"text_used_for_classification": combined_text,
|
|
|
|
| 135 |
"smishing_keywords_found": found_smishing,
|
| 136 |
"other_scam_keywords_found": found_other_scam,
|
| 137 |
"urls_found": found_urls,
|
|
|
|
| 138 |
}
|
| 139 |
|
| 140 |
demo = gr.Interface(
|
|
|
|
| 151 |
)
|
| 152 |
],
|
| 153 |
outputs="json",
|
| 154 |
+
title="SMiShing & Scam Detector (Language Detection + Keyword Translation)",
|
| 155 |
description="""
|
| 156 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
| 157 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
| 158 |
+
If Spanish, it translates the English-based keyword lists to Spanish before boosting the scores.
|
| 159 |
+
Any URL found further boosts SMiShing specifically.
|
| 160 |
+
""",
|
| 161 |
+
allow_flagging="never"
|
| 162 |
)
|
| 163 |
|
| 164 |
if __name__ == "__main__":
|
| 165 |
+
demo.launch()
|