Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
6a95f1f
1
Parent(s):
cbc2dd6
code
Browse files- app.py +65 -21
- draw_boxes.py +41 -0
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,21 +1,67 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import cv2
|
| 4 |
-
import
|
| 5 |
-
from ultralytics import YOLOv10
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
@spaces.GPU
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
|
@@ -26,18 +72,18 @@ with gr.Blocks(css=css) as app:
|
|
| 26 |
gr.HTML(
|
| 27 |
"""
|
| 28 |
<h1 style='text-align: center'>
|
| 29 |
-
|
| 30 |
</h1>
|
| 31 |
""")
|
| 32 |
gr.HTML(
|
| 33 |
"""
|
| 34 |
<h3 style='text-align: center'>
|
| 35 |
-
<a href='https://arxiv.org/abs/
|
| 36 |
</h3>
|
| 37 |
""")
|
| 38 |
with gr.Column(elem_classes=["my-column"]):
|
| 39 |
with gr.Group(elem_classes=["my-group"]):
|
| 40 |
-
|
| 41 |
conf_threshold = gr.Slider(
|
| 42 |
label="Confidence Threshold",
|
| 43 |
minimum=0.0,
|
|
@@ -45,12 +91,10 @@ with gr.Blocks(css=css) as app:
|
|
| 45 |
step=0.05,
|
| 46 |
value=0.30,
|
| 47 |
)
|
| 48 |
-
|
| 49 |
-
fn=
|
| 50 |
-
inputs=[
|
| 51 |
-
outputs=[
|
| 52 |
-
stream_every=0.1,
|
| 53 |
-
time_limit=30
|
| 54 |
)
|
| 55 |
|
| 56 |
if __name__ == '__main__':
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import cv2
|
| 4 |
+
from PIL import Image
|
|
|
|
| 5 |
|
| 6 |
+
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
| 7 |
+
|
| 8 |
+
from draw_boxes import draw_bounding_boxes
|
| 9 |
+
|
| 10 |
+
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
| 11 |
+
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
| 12 |
|
| 13 |
@spaces.GPU
|
| 14 |
+
def stream_object_detection(video, conf_threshold):
|
| 15 |
+
cap = cv2.VideoCapture(video)
|
| 16 |
+
|
| 17 |
+
video_codec = cv2.VideoWriter_fourcc(*"x264") # type: ignore
|
| 18 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 19 |
+
desired_fps = fps // 3
|
| 20 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 21 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 22 |
+
|
| 23 |
+
iterating, frame = cap.read()
|
| 24 |
+
|
| 25 |
+
n_frames = 0
|
| 26 |
+
n_chunks = 0
|
| 27 |
+
name = str(current_dir / f"output_{n_chunks}.ts")
|
| 28 |
+
segment_file = cv2.VideoWriter(name, video_codec, fps, (width, height)) # type: ignore
|
| 29 |
+
batch = []
|
| 30 |
+
|
| 31 |
+
while iterating:
|
| 32 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 33 |
+
if n_frames % 3 == 0:
|
| 34 |
+
batch.append(frame)
|
| 35 |
+
if len(batch) == desired_fps:
|
| 36 |
+
inputs = image_processor(images=batch, return_tensors="pt")
|
| 37 |
+
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
+
|
| 41 |
+
boxes = image_processor.post_process_object_detection(
|
| 42 |
+
outputs,
|
| 43 |
+
target_sizes=torch.tensor([batch[0].shape[::-1]] * len(batch)),
|
| 44 |
+
threshold=conf_threshold)
|
| 45 |
+
|
| 46 |
+
for array, box in zip(batch, boxes):
|
| 47 |
+
pil_image = draw_bounding_boxes(Image.from_array(array), boxes[0], model, 0.3)
|
| 48 |
+
frame = numpy.array(pil_image)
|
| 49 |
+
# Convert RGB to BGR
|
| 50 |
+
frame = frame[:, :, ::-1].copy()
|
| 51 |
+
segment_file.write(frame)
|
| 52 |
+
|
| 53 |
+
segment_file.release()
|
| 54 |
+
n_frames = 0
|
| 55 |
+
n_chunks += 1
|
| 56 |
+
yield name
|
| 57 |
+
name = str(current_dir / f"output_{n_chunks}.ts")
|
| 58 |
+
segment_file = cv2.VideoWriter(name, video_codec, fps, (width, height)) # type: ignore
|
| 59 |
+
|
| 60 |
+
iterating, frame = cap.read()
|
| 61 |
+
n_frames += 1
|
| 62 |
+
|
| 63 |
+
segment_file.release()
|
| 64 |
+
yield name
|
| 65 |
|
| 66 |
|
| 67 |
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
|
|
|
| 72 |
gr.HTML(
|
| 73 |
"""
|
| 74 |
<h1 style='text-align: center'>
|
| 75 |
+
Video Object Detection with RT-DETR
|
| 76 |
</h1>
|
| 77 |
""")
|
| 78 |
gr.HTML(
|
| 79 |
"""
|
| 80 |
<h3 style='text-align: center'>
|
| 81 |
+
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>github</a>
|
| 82 |
</h3>
|
| 83 |
""")
|
| 84 |
with gr.Column(elem_classes=["my-column"]):
|
| 85 |
with gr.Group(elem_classes=["my-group"]):
|
| 86 |
+
video = gr.Video(label="Video Source")
|
| 87 |
conf_threshold = gr.Slider(
|
| 88 |
label="Confidence Threshold",
|
| 89 |
minimum=0.0,
|
|
|
|
| 91 |
step=0.05,
|
| 92 |
value=0.30,
|
| 93 |
)
|
| 94 |
+
video.upload(
|
| 95 |
+
fn=stream_object_detection,
|
| 96 |
+
inputs=[video, conf_threshold],
|
| 97 |
+
outputs=[video],
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
if __name__ == '__main__':
|
draw_boxes.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 2 |
+
import numpy as np
|
| 3 |
+
import colorsys
|
| 4 |
+
|
| 5 |
+
def get_color(label):
|
| 6 |
+
# Simple hash function to generate consistent colors for each label
|
| 7 |
+
hash_value = hash(label)
|
| 8 |
+
hue = (hash_value % 100) / 100.0
|
| 9 |
+
saturation = 0.7
|
| 10 |
+
value = 0.9
|
| 11 |
+
rgb = colorsys.hsv_to_rgb(hue, saturation, value)
|
| 12 |
+
return tuple(int(x * 255) for x in rgb)
|
| 13 |
+
|
| 14 |
+
def draw_bounding_boxes(image: Image, results: dict, model, threshold=0.3):
|
| 15 |
+
draw = ImageDraw.Draw(image)
|
| 16 |
+
font = ImageFont.load_default()
|
| 17 |
+
|
| 18 |
+
for score, label_id, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 19 |
+
if score > threshold:
|
| 20 |
+
label = model.config.id2label[label_id.item()]
|
| 21 |
+
box = [round(i, 2) for i in box.tolist()]
|
| 22 |
+
color = get_color(label)
|
| 23 |
+
|
| 24 |
+
# Draw bounding box
|
| 25 |
+
draw.rectangle(box, outline=color, width=3)
|
| 26 |
+
|
| 27 |
+
# Prepare text
|
| 28 |
+
text = f"{label}: {score:.2f}"
|
| 29 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
| 30 |
+
text_width = text_bbox[2] - text_bbox[0]
|
| 31 |
+
text_height = text_bbox[3] - text_bbox[1]
|
| 32 |
+
|
| 33 |
+
# Draw text background
|
| 34 |
+
draw.rectangle([box[0], box[1] - text_height - 4, box[0] + text_width, box[1]], fill=color)
|
| 35 |
+
|
| 36 |
+
# Draw text
|
| 37 |
+
draw.text((box[0], box[1] - text_height - 4), text, fill="white", font=font)
|
| 38 |
+
|
| 39 |
+
return image
|
| 40 |
+
|
| 41 |
+
import numpy as np
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
safetensors==0.4.3
|
| 2 |
-
|
| 3 |
gradio-client @ git+https://github.com/gradio-app/gradio@66349fe26827e3a3c15b738a1177e95fec7f5554#subdirectory=client/python
|
| 4 |
https://gradio-pypi-previews.s3.amazonaws.com/66349fe26827e3a3c15b738a1177e95fec7f5554/gradio-4.42.0-py3-none-any.whl
|
|
|
|
| 1 |
safetensors==0.4.3
|
| 2 |
+
transformers
|
| 3 |
gradio-client @ git+https://github.com/gradio-app/gradio@66349fe26827e3a3c15b738a1177e95fec7f5554#subdirectory=client/python
|
| 4 |
https://gradio-pypi-previews.s3.amazonaws.com/66349fe26827e3a3c15b738a1177e95fec7f5554/gradio-4.42.0-py3-none-any.whl
|