Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
619c27a
1
Parent(s):
b7278d2
requirements
Browse files- app.py +39 -34
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -13,29 +13,32 @@ from draw_boxes import draw_bounding_boxes
|
|
| 13 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
| 14 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
@spaces.GPU
|
| 17 |
def stream_object_detection(video, conf_threshold):
|
| 18 |
cap = cv2.VideoCapture(video)
|
| 19 |
|
| 20 |
-
video_codec = cv2.VideoWriter_fourcc(*"
|
| 21 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 22 |
-
desired_fps = fps //
|
| 23 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 24 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 25 |
|
| 26 |
iterating, frame = cap.read()
|
| 27 |
|
| 28 |
n_frames = 0
|
| 29 |
n_chunks = 0
|
| 30 |
|
| 31 |
-
name = f"output_{n_chunks}.
|
| 32 |
-
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width
|
| 33 |
batch = []
|
| 34 |
|
| 35 |
while iterating:
|
| 36 |
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
|
| 37 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 38 |
-
if n_frames %
|
| 39 |
batch.append(frame)
|
| 40 |
if len(batch) == 2 * desired_fps:
|
| 41 |
inputs = image_processor(images=batch, return_tensors="pt")
|
|
@@ -49,34 +52,32 @@ def stream_object_detection(video, conf_threshold):
|
|
| 49 |
|
| 50 |
boxes = image_processor.post_process_object_detection(
|
| 51 |
outputs,
|
| 52 |
-
target_sizes=torch.tensor([
|
| 53 |
threshold=conf_threshold)
|
| 54 |
|
| 55 |
-
for array, box in zip(batch, boxes):
|
| 56 |
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold)
|
|
|
|
| 57 |
frame = np.array(pil_image)
|
| 58 |
# Convert RGB to BGR
|
| 59 |
frame = frame[:, :, ::-1].copy()
|
| 60 |
segment_file.write(frame)
|
| 61 |
|
|
|
|
| 62 |
segment_file.release()
|
|
|
|
| 63 |
n_frames = 0
|
| 64 |
n_chunks += 1
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
segment_file = cv2.VideoWriter(name, video_codec, fps, (width, height)) # type: ignore
|
| 68 |
|
| 69 |
iterating, frame = cap.read()
|
| 70 |
n_frames += 1
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 77 |
-
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 78 |
-
|
| 79 |
|
|
|
|
| 80 |
with gr.Blocks(css=css) as app:
|
| 81 |
gr.HTML(
|
| 82 |
"""
|
|
@@ -90,21 +91,25 @@ with gr.Blocks(css=css) as app:
|
|
| 90 |
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>github</a>
|
| 91 |
</h3>
|
| 92 |
""")
|
| 93 |
-
with gr.
|
| 94 |
-
with gr.
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
if __name__ == '__main__':
|
| 110 |
app.launch()
|
|
|
|
| 13 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
| 14 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
| 15 |
|
| 16 |
+
|
| 17 |
+
SUBSAMPLE = 10
|
| 18 |
+
|
| 19 |
@spaces.GPU
|
| 20 |
def stream_object_detection(video, conf_threshold):
|
| 21 |
cap = cv2.VideoCapture(video)
|
| 22 |
|
| 23 |
+
video_codec = cv2.VideoWriter_fourcc(*"x264") # type: ignore
|
| 24 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 25 |
+
desired_fps = fps // SUBSAMPLE
|
| 26 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
|
| 27 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
|
| 28 |
|
| 29 |
iterating, frame = cap.read()
|
| 30 |
|
| 31 |
n_frames = 0
|
| 32 |
n_chunks = 0
|
| 33 |
|
| 34 |
+
name = f"output_{n_chunks}.ts"
|
| 35 |
+
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
| 36 |
batch = []
|
| 37 |
|
| 38 |
while iterating:
|
| 39 |
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
|
| 40 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 41 |
+
if n_frames % SUBSAMPLE == 0:
|
| 42 |
batch.append(frame)
|
| 43 |
if len(batch) == 2 * desired_fps:
|
| 44 |
inputs = image_processor(images=batch, return_tensors="pt")
|
|
|
|
| 52 |
|
| 53 |
boxes = image_processor.post_process_object_detection(
|
| 54 |
outputs,
|
| 55 |
+
target_sizes=torch.tensor([(height, width)] * len(batch)),
|
| 56 |
threshold=conf_threshold)
|
| 57 |
|
| 58 |
+
for i, (array, box) in enumerate(zip(batch, boxes)):
|
| 59 |
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold)
|
| 60 |
+
pil_image.save(f"batch_{n_chunks}_detection_{i}.png")
|
| 61 |
frame = np.array(pil_image)
|
| 62 |
# Convert RGB to BGR
|
| 63 |
frame = frame[:, :, ::-1].copy()
|
| 64 |
segment_file.write(frame)
|
| 65 |
|
| 66 |
+
batch = []
|
| 67 |
segment_file.release()
|
| 68 |
+
yield name
|
| 69 |
n_frames = 0
|
| 70 |
n_chunks += 1
|
| 71 |
+
name = f"output_{n_chunks}.ts"
|
| 72 |
+
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
|
|
|
| 73 |
|
| 74 |
iterating, frame = cap.read()
|
| 75 |
n_frames += 1
|
| 76 |
|
| 77 |
+
# css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 78 |
+
# .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
css=""
|
| 81 |
with gr.Blocks(css=css) as app:
|
| 82 |
gr.HTML(
|
| 83 |
"""
|
|
|
|
| 91 |
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>github</a>
|
| 92 |
</h3>
|
| 93 |
""")
|
| 94 |
+
with gr.Row():
|
| 95 |
+
with gr.Column():
|
| 96 |
+
with gr.Group(elem_classes=["my-group"]):
|
| 97 |
+
video = gr.Video(label="Video Source")
|
| 98 |
+
conf_threshold = gr.Slider(
|
| 99 |
+
label="Confidence Threshold",
|
| 100 |
+
minimum=0.0,
|
| 101 |
+
maximum=1.0,
|
| 102 |
+
step=0.05,
|
| 103 |
+
value=0.30,
|
| 104 |
+
)
|
| 105 |
+
with gr.Column():
|
| 106 |
+
output_video = gr.Video(label="Processed Video", streaming=True, autoplay=True)
|
| 107 |
+
|
| 108 |
+
video.upload(
|
| 109 |
+
fn=stream_object_detection,
|
| 110 |
+
inputs=[video, conf_threshold],
|
| 111 |
+
outputs=[output_video],
|
| 112 |
+
)
|
| 113 |
|
| 114 |
if __name__ == '__main__':
|
| 115 |
app.launch()
|
requirements.txt
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
safetensors==0.4.3
|
|
|
|
|
|
|
| 2 |
transformers
|
| 3 |
gradio-client @ git+https://github.com/gradio-app/gradio@66349fe26827e3a3c15b738a1177e95fec7f5554#subdirectory=client/python
|
| 4 |
https://gradio-pypi-previews.s3.amazonaws.com/66349fe26827e3a3c15b738a1177e95fec7f5554/gradio-4.42.0-py3-none-any.whl
|
|
|
|
| 1 |
safetensors==0.4.3
|
| 2 |
+
opencv-python
|
| 3 |
+
torch
|
| 4 |
transformers
|
| 5 |
gradio-client @ git+https://github.com/gradio-app/gradio@66349fe26827e3a3c15b738a1177e95fec7f5554#subdirectory=client/python
|
| 6 |
https://gradio-pypi-previews.s3.amazonaws.com/66349fe26827e3a3c15b738a1177e95fec7f5554/gradio-4.42.0-py3-none-any.whl
|