Spaces:
Running
Running
Upload with huggingface_hub
Browse files- DESCRIPTION.md +1 -0
- README.md +6 -7
- example_2.png +0 -0
- requirements.txt +4 -0
- run.py +42 -0
DESCRIPTION.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Image segmentation using DETR. Takes in both an inputu image and the desired confidence, and returns a segmented image.
|
README.md
CHANGED
|
@@ -1,12 +1,11 @@
|
|
|
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.6
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
+
title: image_segmentation_main
|
| 4 |
+
emoji: 🔥
|
| 5 |
+
colorFrom: indigo
|
| 6 |
+
colorTo: indigo
|
| 7 |
sdk: gradio
|
| 8 |
sdk_version: 3.6
|
| 9 |
+
app_file: run.py
|
| 10 |
pinned: false
|
| 11 |
---
|
|
|
|
|
|
example_2.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
scipy
|
| 4 |
+
numpyhttps://gradio-main-build.s3.amazonaws.com/c3bec6153737855510542e8154391f328ac72606/gradio-3.6-py3-none-any.whl
|
run.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
| 6 |
+
|
| 7 |
+
device = torch.device("cpu")
|
| 8 |
+
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-ade").to(device)
|
| 9 |
+
model.eval()
|
| 10 |
+
preprocessor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-ade")
|
| 11 |
+
|
| 12 |
+
def visualize_instance_seg_mask(mask):
|
| 13 |
+
image = np.zeros((mask.shape[0], mask.shape[1], 3))
|
| 14 |
+
labels = np.unique(mask)
|
| 15 |
+
label2color = {label: (random.randint(0, 1), random.randint(0, 255), random.randint(0, 255)) for label in labels}
|
| 16 |
+
for i in range(image.shape[0]):
|
| 17 |
+
for j in range(image.shape[1]):
|
| 18 |
+
image[i, j, :] = label2color[mask[i, j]]
|
| 19 |
+
image = image / 255
|
| 20 |
+
return image
|
| 21 |
+
|
| 22 |
+
def query_image(img):
|
| 23 |
+
target_size = (img.shape[0], img.shape[1])
|
| 24 |
+
inputs = preprocessor(images=img, return_tensors="pt")
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
outputs = model(**inputs)
|
| 27 |
+
outputs.class_queries_logits = outputs.class_queries_logits.cpu()
|
| 28 |
+
outputs.masks_queries_logits = outputs.masks_queries_logits.cpu()
|
| 29 |
+
results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach()
|
| 30 |
+
results = torch.argmax(results, dim=0).numpy()
|
| 31 |
+
results = visualize_instance_seg_mask(results)
|
| 32 |
+
return results
|
| 33 |
+
|
| 34 |
+
demo = gr.Interface(
|
| 35 |
+
query_image,
|
| 36 |
+
inputs=[gr.Image()],
|
| 37 |
+
outputs="image",
|
| 38 |
+
title="MaskFormer Demo",
|
| 39 |
+
examples=[["example_2.png"]]
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
demo.launch()
|