Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,514 +1,352 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
-
from visualcloze import VisualClozeModel
|
| 4 |
import gradio as gr
|
| 5 |
-
import
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
from
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
}
|
| 34 |
-
```
|
| 35 |
"""
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
gr.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
</a>
|
| 66 |
-
</div>
|
| 67 |
-
""")
|
| 68 |
-
|
| 69 |
-
gr.Markdown(GUIDANCE)
|
| 70 |
-
|
| 71 |
-
# Pre-create all possible image components
|
| 72 |
-
all_image_inputs = []
|
| 73 |
-
rows = []
|
| 74 |
-
row_texts = []
|
| 75 |
-
with gr.Row():
|
| 76 |
-
|
| 77 |
-
with gr.Column(scale=2):
|
| 78 |
-
# Image grid
|
| 79 |
-
for i in range(max_grid_h):
|
| 80 |
-
# Add row label before each row
|
| 81 |
-
row_texts.append(gr.Markdown(
|
| 82 |
-
"## Query" if i == default_grid_h - 1 else f"## In-context Example {i + 1}",
|
| 83 |
-
elem_id=f"row_text_{i}",
|
| 84 |
-
visible=i < default_grid_h
|
| 85 |
-
))
|
| 86 |
-
with gr.Row(visible=i < default_grid_h, elem_id=f"row_{i}") as row:
|
| 87 |
-
rows.append(row)
|
| 88 |
-
for j in range(max_grid_w):
|
| 89 |
-
img_input = gr.Image(
|
| 90 |
-
label=f"In-context Example {i + 1}/{j + 1}" if i != default_grid_h - 1 else f"Query {j + 1}",
|
| 91 |
-
type="pil",
|
| 92 |
-
visible= i < default_grid_h and j < default_grid_w,
|
| 93 |
-
interactive=True,
|
| 94 |
-
elem_id=f"img_{i}_{j}"
|
| 95 |
)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
label='Style Condition Fusion',
|
| 183 |
-
samples_per_page=1000,
|
| 184 |
-
components=[text_style_condition_fusion_tasks])
|
| 185 |
-
|
| 186 |
-
text_tryon_tasks = gr.Textbox(label="Task", visible=False)
|
| 187 |
-
tryon_tasks = gr.Dataset(
|
| 188 |
-
samples=examples.tryon_text,
|
| 189 |
-
label='Virtual Try-On',
|
| 190 |
-
samples_per_page=1000,
|
| 191 |
-
components=[text_tryon_tasks])
|
| 192 |
-
|
| 193 |
-
text_relighting_tasks = gr.Textbox(label="Task", visible=False)
|
| 194 |
-
relighting_tasks = gr.Dataset(
|
| 195 |
-
samples=examples.relighting_text,
|
| 196 |
-
label='Relighting',
|
| 197 |
-
samples_per_page=1000,
|
| 198 |
-
components=[text_relighting_tasks])
|
| 199 |
-
|
| 200 |
-
text_photodoodle_tasks = gr.Textbox(label="Task", visible=False)
|
| 201 |
-
photodoodle_tasks = gr.Dataset(
|
| 202 |
-
samples=examples.photodoodle_text,
|
| 203 |
-
label='Photodoodle',
|
| 204 |
-
samples_per_page=1000,
|
| 205 |
-
components=[text_photodoodle_tasks])
|
| 206 |
-
|
| 207 |
-
text_editing_tasks = gr.Textbox(label="Task", visible=False)
|
| 208 |
-
editing_tasks = gr.Dataset(
|
| 209 |
-
samples=examples.editing_text,
|
| 210 |
-
label='Editing',
|
| 211 |
-
samples_per_page=1000,
|
| 212 |
-
components=[text_editing_tasks])
|
| 213 |
-
|
| 214 |
-
text_unseen_tasks = gr.Textbox(label="Task", visible=False)
|
| 215 |
-
unseen_tasks = gr.Dataset(
|
| 216 |
-
samples=examples.unseen_tasks_text,
|
| 217 |
-
label='Unseen Tasks (May produce unstable effects)',
|
| 218 |
-
samples_per_page=1000,
|
| 219 |
-
components=[text_unseen_tasks])
|
| 220 |
-
|
| 221 |
-
gr.Markdown("# Subject-driven Tasks Examples")
|
| 222 |
-
text_subject_driven_tasks = gr.Textbox(label="Task", visible=False)
|
| 223 |
-
subject_driven_tasks = gr.Dataset(
|
| 224 |
-
samples=examples.subject_driven_text,
|
| 225 |
-
label='Subject-driven Generation',
|
| 226 |
-
samples_per_page=1000,
|
| 227 |
-
components=[text_subject_driven_tasks])
|
| 228 |
-
|
| 229 |
-
text_condition_subject_fusion_tasks = gr.Textbox(label="Task", visible=False)
|
| 230 |
-
condition_subject_fusion_tasks = gr.Dataset(
|
| 231 |
-
samples=examples.condition_subject_fusion_text,
|
| 232 |
-
label='Condition+Subject Fusion',
|
| 233 |
-
samples_per_page=1000,
|
| 234 |
-
components=[text_condition_subject_fusion_tasks])
|
| 235 |
-
|
| 236 |
-
text_style_transfer_with_subject_tasks = gr.Textbox(label="Task", visible=False)
|
| 237 |
-
style_transfer_with_subject_tasks = gr.Dataset(
|
| 238 |
-
samples=examples.style_transfer_with_subject_text,
|
| 239 |
-
label='Style Transfer with Subject',
|
| 240 |
-
samples_per_page=1000,
|
| 241 |
-
components=[text_style_transfer_with_subject_tasks])
|
| 242 |
-
|
| 243 |
-
text_condition_subject_style_fusion_tasks = gr.Textbox(label="Task", visible=False)
|
| 244 |
-
condition_subject_style_fusion_tasks = gr.Dataset(
|
| 245 |
-
samples=examples.condition_subject_style_fusion_text,
|
| 246 |
-
label='Condition+Subject+Style Fusion',
|
| 247 |
-
samples_per_page=1000,
|
| 248 |
-
components=[text_condition_subject_style_fusion_tasks])
|
| 249 |
-
|
| 250 |
-
text_editing_with_subject_tasks = gr.Textbox(label="Task", visible=False)
|
| 251 |
-
editing_with_subject_tasks = gr.Dataset(
|
| 252 |
-
samples=examples.editing_with_subject_text,
|
| 253 |
-
label='Editing with Subject',
|
| 254 |
-
samples_per_page=1000,
|
| 255 |
-
components=[text_editing_with_subject_tasks])
|
| 256 |
-
|
| 257 |
-
text_image_restoration_with_subject_tasks = gr.Textbox(label="Task", visible=False)
|
| 258 |
-
image_restoration_with_subject_tasks = gr.Dataset(
|
| 259 |
-
samples=examples.image_restoration_with_subject_text,
|
| 260 |
-
label='Image Restoration with Subject',
|
| 261 |
-
samples_per_page=1000,
|
| 262 |
-
components=[text_image_restoration_with_subject_tasks])
|
| 263 |
-
|
| 264 |
-
def update_grid(h, w):
|
| 265 |
-
actual_h = h + 1
|
| 266 |
-
model.set_grid_size(actual_h, w)
|
| 267 |
-
|
| 268 |
-
updates = []
|
| 269 |
-
|
| 270 |
-
# Update image component visibility
|
| 271 |
-
for i in range(max_grid_h * max_grid_w):
|
| 272 |
-
curr_row = i // max_grid_w
|
| 273 |
-
curr_col = i % max_grid_w
|
| 274 |
-
updates.append(
|
| 275 |
-
gr.update(
|
| 276 |
-
label=f"In-context Example {curr_row + 1}/{curr_col + 1}" if curr_row != actual_h - 1 else f"Query {curr_col + 1}",
|
| 277 |
-
elem_id=f"img_{curr_row}_{curr_col}",
|
| 278 |
-
visible=(curr_row < actual_h and curr_col < w)))
|
| 279 |
-
|
| 280 |
-
# Update row visibility and labels
|
| 281 |
-
updates_row = []
|
| 282 |
-
updates_row_text = []
|
| 283 |
-
for i in range(max_grid_h):
|
| 284 |
-
updates_row.append(gr.update(f"row_{i}", visible=(i < actual_h)))
|
| 285 |
-
updates_row_text.append(
|
| 286 |
-
gr.update(
|
| 287 |
-
elem_id=f"row_text_{i}",
|
| 288 |
-
visible=i < actual_h,
|
| 289 |
-
value="## Query" if i == actual_h - 1 else f"## In-context Example {i + 1}",
|
| 290 |
)
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
updates.extend(updates_row)
|
| 294 |
-
updates.extend(updates_row_text)
|
| 295 |
-
updates.append(gr.update(elem_id="layout_prompt", value=get_layout_instruction(w, actual_h)))
|
| 296 |
-
return updates
|
| 297 |
-
|
| 298 |
-
def generate_image(*inputs):
|
| 299 |
-
images = []
|
| 300 |
-
if grid_h.value + 1 != model.grid_h or grid_w.value != model.grid_w:
|
| 301 |
-
raise gr.Error('Please wait for the loading to complete.')
|
| 302 |
-
for i in range(model.grid_h):
|
| 303 |
-
images.append([])
|
| 304 |
-
for j in range(model.grid_w):
|
| 305 |
-
images[i].append(inputs[i * max_grid_w + j])
|
| 306 |
-
if i != model.grid_h - 1:
|
| 307 |
-
if inputs[i * max_grid_w + j] is None:
|
| 308 |
-
raise gr.Error('Please upload in-context examples. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again.')
|
| 309 |
-
seed, cfg, steps, upsampling_steps, upsampling_noise, layout_text, task_text, content_text = inputs[-8:]
|
| 310 |
-
|
| 311 |
-
try:
|
| 312 |
-
results = generate(
|
| 313 |
-
images,
|
| 314 |
-
[layout_text, task_text, content_text],
|
| 315 |
-
seed=seed, cfg=cfg, steps=steps,
|
| 316 |
-
upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise
|
| 317 |
-
)
|
| 318 |
-
except Exception as e:
|
| 319 |
-
raise gr.Error('Process error. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again. Error: ' + str(e))
|
| 320 |
-
|
| 321 |
-
output = gr.update(
|
| 322 |
-
elem_id='output_gallery',
|
| 323 |
-
value=results,
|
| 324 |
-
columns=min(len(results), 2),
|
| 325 |
-
rows=int(len(results) / 2 + 0.5))
|
| 326 |
-
|
| 327 |
-
return output
|
| 328 |
-
|
| 329 |
-
def process_tasks(task, func):
|
| 330 |
-
outputs = func(task)
|
| 331 |
-
mask = outputs[0]
|
| 332 |
-
state = outputs[1:8]
|
| 333 |
-
if state[5] is None:
|
| 334 |
-
state[5] = default_upsampling_noise
|
| 335 |
-
if state[6] is None:
|
| 336 |
-
state[6] = default_steps
|
| 337 |
-
images = outputs[8:-len(mask)]
|
| 338 |
-
output = outputs[-len(mask):]
|
| 339 |
-
for i in range(len(mask)):
|
| 340 |
-
if mask[i] == 1:
|
| 341 |
-
images.append(None)
|
| 342 |
-
else:
|
| 343 |
-
images.append(output[-len(mask) + i])
|
| 344 |
-
|
| 345 |
-
state[0] = state[0] - 1
|
| 346 |
-
cur_hrid_h = state[0]
|
| 347 |
-
cur_hrid_w = state[1]
|
| 348 |
-
|
| 349 |
-
current_example = [None] * 25
|
| 350 |
-
for i, image in enumerate(images):
|
| 351 |
-
pos = (i // cur_hrid_w) * 5 + (i % cur_hrid_w)
|
| 352 |
-
if image is not None:
|
| 353 |
-
current_example[pos] = image
|
| 354 |
-
update_grid(cur_hrid_h, cur_hrid_w)
|
| 355 |
-
output = gr.update(
|
| 356 |
-
elem_id='output_gallery',
|
| 357 |
-
value=[o for o, m in zip(output, mask) if m == 1],
|
| 358 |
-
columns=min(sum(mask), 2),
|
| 359 |
-
rows=int(sum(mask) / 2 + 0.5))
|
| 360 |
-
return [output] + current_example + state
|
| 361 |
-
|
| 362 |
-
dense_prediction_tasks.click(
|
| 363 |
-
partial(process_tasks, func=examples.process_dense_prediction_tasks),
|
| 364 |
-
inputs=[dense_prediction_tasks],
|
| 365 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 366 |
-
show_progress="full",
|
| 367 |
-
show_progress_on=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + [generate_btn])
|
| 368 |
-
|
| 369 |
-
conditional_generation_tasks.click(
|
| 370 |
-
partial(process_tasks, func=examples.process_conditional_generation_tasks),
|
| 371 |
-
inputs=[conditional_generation_tasks],
|
| 372 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 373 |
-
show_progress="full")
|
| 374 |
-
|
| 375 |
-
image_restoration_tasks.click(
|
| 376 |
-
partial(process_tasks, func=examples.process_image_restoration_tasks),
|
| 377 |
-
inputs=[image_restoration_tasks],
|
| 378 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 379 |
-
show_progress="full")
|
| 380 |
-
|
| 381 |
-
style_transfer_tasks.click(
|
| 382 |
-
partial(process_tasks, func=examples.process_style_transfer_tasks),
|
| 383 |
-
inputs=[style_transfer_tasks],
|
| 384 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 385 |
-
show_progress="full")
|
| 386 |
-
|
| 387 |
-
style_condition_fusion_tasks.click(
|
| 388 |
-
partial(process_tasks, func=examples.process_style_condition_fusion_tasks),
|
| 389 |
-
inputs=[style_condition_fusion_tasks],
|
| 390 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 391 |
-
show_progress="full")
|
| 392 |
-
|
| 393 |
-
relighting_tasks.click(
|
| 394 |
-
partial(process_tasks, func=examples.process_relighting_tasks),
|
| 395 |
-
inputs=[relighting_tasks],
|
| 396 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 397 |
-
show_progress="full")
|
| 398 |
-
|
| 399 |
-
tryon_tasks.click(
|
| 400 |
-
partial(process_tasks, func=examples.process_tryon_tasks),
|
| 401 |
-
inputs=[tryon_tasks],
|
| 402 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 403 |
-
show_progress="full")
|
| 404 |
-
|
| 405 |
-
photodoodle_tasks.click(
|
| 406 |
-
partial(process_tasks, func=examples.process_photodoodle_tasks),
|
| 407 |
-
inputs=[photodoodle_tasks],
|
| 408 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 409 |
-
show_progress="full")
|
| 410 |
-
|
| 411 |
-
editing_tasks.click(
|
| 412 |
-
partial(process_tasks, func=examples.process_editing_tasks),
|
| 413 |
-
inputs=[editing_tasks],
|
| 414 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 415 |
-
show_progress="full")
|
| 416 |
-
|
| 417 |
-
unseen_tasks.click(
|
| 418 |
-
partial(process_tasks, func=examples.process_unseen_tasks),
|
| 419 |
-
inputs=[unseen_tasks],
|
| 420 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 421 |
-
show_progress="full")
|
| 422 |
-
|
| 423 |
-
subject_driven_tasks.click(
|
| 424 |
-
partial(process_tasks, func=examples.process_subject_driven_tasks),
|
| 425 |
-
inputs=[subject_driven_tasks],
|
| 426 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 427 |
-
show_progress="full")
|
| 428 |
-
|
| 429 |
-
style_transfer_with_subject_tasks.click(
|
| 430 |
-
partial(process_tasks, func=examples.process_style_transfer_with_subject_tasks),
|
| 431 |
-
inputs=[style_transfer_with_subject_tasks],
|
| 432 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 433 |
-
show_progress="full")
|
| 434 |
-
|
| 435 |
-
condition_subject_fusion_tasks.click(
|
| 436 |
-
partial(process_tasks, func=examples.process_condition_subject_fusion_tasks),
|
| 437 |
-
inputs=[condition_subject_fusion_tasks],
|
| 438 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 439 |
-
show_progress="full")
|
| 440 |
-
|
| 441 |
-
condition_subject_style_fusion_tasks.click(
|
| 442 |
-
partial(process_tasks, func=examples.process_condition_subject_style_fusion_tasks),
|
| 443 |
-
inputs=[condition_subject_style_fusion_tasks],
|
| 444 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 445 |
-
show_progress="full")
|
| 446 |
-
|
| 447 |
-
editing_with_subject_tasks.click(
|
| 448 |
-
partial(process_tasks, func=examples.process_editing_with_subject_tasks),
|
| 449 |
-
inputs=[editing_with_subject_tasks],
|
| 450 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 451 |
-
show_progress="full")
|
| 452 |
-
|
| 453 |
-
image_restoration_with_subject_tasks.click(
|
| 454 |
-
partial(process_tasks, func=examples.process_image_restoration_with_subject_tasks),
|
| 455 |
-
inputs=[image_restoration_with_subject_tasks],
|
| 456 |
-
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
|
| 457 |
-
show_progress="full")
|
| 458 |
-
# Initialize grid
|
| 459 |
-
model.set_grid_size(default_grid_h, default_grid_w)
|
| 460 |
-
|
| 461 |
-
# Connect event processing function to all components that need updating
|
| 462 |
-
output_components = all_image_inputs + rows + row_texts + [layout_prompt]
|
| 463 |
-
|
| 464 |
-
grid_h.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
|
| 465 |
-
grid_w.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
|
| 466 |
-
|
| 467 |
-
# Modify generate button click event
|
| 468 |
-
generate_btn.click(
|
| 469 |
-
fn=generate_image,
|
| 470 |
-
inputs=all_image_inputs + [seed, cfg, steps, upsampling_steps, upsampling_noise] + [layout_prompt, task_prompt, content_prompt],
|
| 471 |
-
outputs=output_gallery
|
| 472 |
-
)
|
| 473 |
-
|
| 474 |
-
return demo
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
@spaces.GPU()
|
| 478 |
-
def generate(
|
| 479 |
-
images,
|
| 480 |
-
prompts,
|
| 481 |
-
seed, cfg, steps,
|
| 482 |
-
upsampling_steps, upsampling_noise):
|
| 483 |
-
with torch.no_grad():
|
| 484 |
-
return model.process_images(
|
| 485 |
-
images=images,
|
| 486 |
-
prompts=prompts,
|
| 487 |
-
seed=seed,
|
| 488 |
-
cfg=cfg,
|
| 489 |
-
steps=steps,
|
| 490 |
-
upsampling_steps=upsampling_steps,
|
| 491 |
-
upsampling_noise=upsampling_noise)
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
def parse_args():
|
| 495 |
-
parser = argparse.ArgumentParser()
|
| 496 |
-
parser.add_argument("--model_path", type=str, default="checkpoints/visualcloze-384-lora.pth")
|
| 497 |
-
parser.add_argument("--precision", type=str, choices=["fp32", "bf16", "fp16"], default="bf16")
|
| 498 |
-
parser.add_argument("--resolution", type=int, default=384)
|
| 499 |
-
return parser.parse_args()
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
if __name__ == "__main__":
|
| 503 |
-
args = parse_args()
|
| 504 |
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
|
|
|
| 509 |
|
| 510 |
-
#
|
| 511 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
|
| 513 |
-
|
| 514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
iimport os
|
| 2 |
+
import uuid
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
+
from clip_slider_pipeline import CLIPSliderFlux
|
| 6 |
+
from diffusers import FluxPipeline, AutoencoderTiny
|
| 7 |
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
import cv2
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from diffusers.utils import load_image
|
| 12 |
+
from diffusers.utils import export_to_video
|
| 13 |
+
import random
|
| 14 |
+
|
| 15 |
+
# English menu labels
|
| 16 |
+
english_labels = {
|
| 17 |
+
"Prompt": "Prompt",
|
| 18 |
+
"1st direction to steer": "1st Direction",
|
| 19 |
+
"2nd direction to steer": "2nd Direction",
|
| 20 |
+
"Strength": "Strength",
|
| 21 |
+
"Generate directions": "Generate Directions",
|
| 22 |
+
"Generated Images": "Generated Images",
|
| 23 |
+
"From 1st to 2nd direction": "From 1st to 2nd Direction",
|
| 24 |
+
"Strip": "Image Strip",
|
| 25 |
+
"Looping video": "Looping Video",
|
| 26 |
+
"Advanced options": "Advanced Options",
|
| 27 |
+
"Num of intermediate images": "Number of Intermediate Images",
|
| 28 |
+
"Num iterations for clip directions": "Number of CLIP Direction Iterations",
|
| 29 |
+
"Num inference steps": "Number of Inference Steps",
|
| 30 |
+
"Guidance scale": "Guidance Scale",
|
| 31 |
+
"Randomize seed": "Randomize Seed",
|
| 32 |
+
"Seed": "Seed"
|
| 33 |
+
}
|
| 34 |
|
| 35 |
+
# Load pipelines
|
| 36 |
+
base_model = "black-forest-labs/FLUX.1-schnell"
|
| 37 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
|
| 38 |
+
pipe = FluxPipeline.from_pretrained(
|
| 39 |
+
base_model,
|
| 40 |
+
vae=taef1,
|
| 41 |
+
torch_dtype=torch.bfloat16
|
| 42 |
+
)
|
| 43 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
| 44 |
+
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 45 |
+
MAX_SEED = 2**32 - 1
|
| 46 |
+
|
| 47 |
+
def save_images_with_unique_filenames(image_list, save_directory):
|
| 48 |
+
if not os.path.exists(save_directory):
|
| 49 |
+
os.makedirs(save_directory)
|
| 50 |
+
paths = []
|
| 51 |
+
for image in image_list:
|
| 52 |
+
unique_filename = f"{uuid.uuid4()}.png"
|
| 53 |
+
file_path = os.path.join(save_directory, unique_filename)
|
| 54 |
+
image.save(file_path)
|
| 55 |
+
paths.append(file_path)
|
| 56 |
+
return paths
|
| 57 |
+
|
| 58 |
+
def convert_to_centered_scale(num):
|
| 59 |
+
if num % 2 == 0: # even
|
| 60 |
+
start = -(num // 2 - 1)
|
| 61 |
+
end = num // 2
|
| 62 |
+
else: # odd
|
| 63 |
+
start = -(num // 2)
|
| 64 |
+
end = num // 2
|
| 65 |
+
return tuple(range(start, end + 1))
|
| 66 |
+
|
| 67 |
+
def is_korean(text):
|
| 68 |
+
"""ํ๊ธ ํฌํจ ์ฌ๋ถ ํ์ธ"""
|
| 69 |
+
return any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text)
|
| 70 |
+
|
| 71 |
+
@spaces.GPU(duration=85)
|
| 72 |
+
def generate(prompt,
|
| 73 |
+
concept_1,
|
| 74 |
+
concept_2,
|
| 75 |
+
scale,
|
| 76 |
+
randomize_seed=True,
|
| 77 |
+
seed=42,
|
| 78 |
+
recalc_directions=True,
|
| 79 |
+
iterations=200,
|
| 80 |
+
steps=3,
|
| 81 |
+
interm_steps=33,
|
| 82 |
+
guidance_scale=3.5,
|
| 83 |
+
x_concept_1="", x_concept_2="",
|
| 84 |
+
avg_diff_x=None,
|
| 85 |
+
total_images=[],
|
| 86 |
+
gradio_progress=gr.Progress()):
|
| 87 |
+
# Check if there is Korean text and warn if so
|
| 88 |
+
if is_korean(prompt) or is_korean(concept_1) or is_korean(concept_2):
|
| 89 |
+
print("Korean text detected. The model will use it directly without translation.")
|
| 90 |
+
|
| 91 |
+
print(f"Prompt: {prompt}, โ {concept_2}, {concept_1} โก๏ธ . scale {scale}, interm steps {interm_steps}")
|
| 92 |
+
slider_x = [concept_2, concept_1]
|
| 93 |
+
if randomize_seed:
|
| 94 |
+
seed = random.randint(0, MAX_SEED)
|
| 95 |
+
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
| 96 |
+
gradio_progress(0, desc="Calculating directions...")
|
| 97 |
+
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
| 98 |
+
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 99 |
+
else:
|
| 100 |
+
avg_diff = avg_diff_x
|
| 101 |
+
images = []
|
| 102 |
+
high_scale = scale
|
| 103 |
+
low_scale = -1 * scale
|
| 104 |
+
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
|
| 105 |
+
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
| 106 |
+
image = clip_slider.generate(
|
| 107 |
+
prompt,
|
| 108 |
+
width=768,
|
| 109 |
+
height=768,
|
| 110 |
+
guidance_scale=guidance_scale,
|
| 111 |
+
scale=cur_scale,
|
| 112 |
+
seed=seed,
|
| 113 |
+
num_inference_steps=steps,
|
| 114 |
+
avg_diff=avg_diff
|
| 115 |
+
)
|
| 116 |
+
images.append(image)
|
| 117 |
+
canvas = Image.new('RGB', (256 * interm_steps, 256))
|
| 118 |
+
for i, im in enumerate(images):
|
| 119 |
+
canvas.paste(im.resize((256, 256)), (256 * i, 0))
|
| 120 |
+
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
| 121 |
+
scale_total = convert_to_centered_scale(interm_steps)
|
| 122 |
+
scale_min = scale_total[0]
|
| 123 |
+
scale_max = scale_total[-1]
|
| 124 |
+
scale_middle = scale_total.index(0)
|
| 125 |
+
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
|
| 126 |
+
avg_diff_x = avg_diff.cpu()
|
| 127 |
+
video_path = f"{uuid.uuid4()}.mp4"
|
| 128 |
+
print(video_path)
|
| 129 |
+
return x_concept_1, x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
| 130 |
+
|
| 131 |
+
def update_pre_generated_images(slider_value, total_images):
|
| 132 |
+
number_images = len(total_images) if total_images else 0
|
| 133 |
+
if number_images > 0:
|
| 134 |
+
scale_tuple = convert_to_centered_scale(number_images)
|
| 135 |
+
return total_images[scale_tuple.index(slider_value)][0]
|
| 136 |
+
else:
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
def reset_recalc_directions():
|
| 140 |
+
return True
|
| 141 |
+
|
| 142 |
+
# Five "Time Stream" themed examples (one Korean example included)
|
| 143 |
+
examples = [
|
| 144 |
+
["์ ์ ํ ํ ๋งํ ๊ฐ ๋ถํจํ ํ ๋งํ ๋ก ๋ณํด๊ฐ๋ ๊ณผ์ ", "Fresh", "Rotten", 2.0],
|
| 145 |
+
["A blooming flower gradually withers into decay", "Bloom", "Wither", 1.5],
|
| 146 |
+
["A vibrant cityscape transforms into a derelict ruin over time", "Modern", "Ruined", 2.5],
|
| 147 |
+
["A lively forest slowly changes into an autumnal landscape", "Spring", "Autumn", 2.0],
|
| 148 |
+
["A calm ocean evolves into a stormy seascape as time passes", "Calm", "Stormy", 3.0]
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
# CSS for a bright and modern UI with a background image
|
| 152 |
+
css = """
|
| 153 |
+
/* Bright and modern UI with background image */
|
| 154 |
+
body {
|
| 155 |
+
background: #ffffff url('https://images.unsplash.com/photo-1506748686214-e9df14d4d9d0?ixlib=rb-1.2.1&auto=format&fit=crop&w=1600&q=80') no-repeat center center fixed;
|
| 156 |
+
background-size: cover;
|
| 157 |
+
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
|
| 158 |
+
color: #333;
|
| 159 |
+
}
|
| 160 |
+
footer {
|
| 161 |
+
visibility: hidden;
|
| 162 |
+
}
|
| 163 |
+
.container {
|
| 164 |
+
max-width: 1200px;
|
| 165 |
+
margin: 20px auto;
|
| 166 |
+
padding: 0 10px;
|
| 167 |
+
}
|
| 168 |
+
.main-panel {
|
| 169 |
+
background-color: rgba(255, 255, 255, 0.9);
|
| 170 |
+
border-radius: 12px;
|
| 171 |
+
padding: 20px;
|
| 172 |
+
margin-bottom: 20px;
|
| 173 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
| 174 |
+
}
|
| 175 |
+
.controls-panel {
|
| 176 |
+
background-color: rgba(255, 255, 255, 0.85);
|
| 177 |
+
border-radius: 8px;
|
| 178 |
+
padding: 16px;
|
| 179 |
+
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05);
|
| 180 |
+
}
|
| 181 |
+
.image-display {
|
| 182 |
+
min-height: 400px;
|
| 183 |
+
display: flex;
|
| 184 |
+
flex-direction: column;
|
| 185 |
+
justify-content: center;
|
| 186 |
+
}
|
| 187 |
+
.slider-container {
|
| 188 |
+
padding: 10px 0;
|
| 189 |
+
}
|
| 190 |
+
.advanced-panel {
|
| 191 |
+
margin-top: 20px;
|
| 192 |
+
border-top: 1px solid #eaeaea;
|
| 193 |
+
padding-top: 20px;
|
| 194 |
}
|
|
|
|
| 195 |
"""
|
| 196 |
|
| 197 |
+
# ์ฌ๊ธฐ์์ show_api=False๋ฅผ ์ถ๊ฐํด Gradio์ OpenAPI ์คํค๋ง ์์ฑ์ ๋นํ์ฑํํฉ๋๋ค.
|
| 198 |
+
with gr.Blocks(css=css, title="Time Stream", show_api=False) as demo:
|
| 199 |
+
gr.Markdown("# Time Stream")
|
| 200 |
+
|
| 201 |
+
x_concept_1 = gr.State("")
|
| 202 |
+
x_concept_2 = gr.State("")
|
| 203 |
+
total_images = gr.State([])
|
| 204 |
+
avg_diff_x = gr.State()
|
| 205 |
+
recalc_directions = gr.State(False)
|
| 206 |
+
|
| 207 |
+
with gr.Row(elem_classes="container"):
|
| 208 |
+
# Left Column - Controls
|
| 209 |
+
with gr.Column(scale=4):
|
| 210 |
+
with gr.Group(elem_classes="main-panel"):
|
| 211 |
+
gr.Markdown("### Image Generation Controls")
|
| 212 |
+
with gr.Group(elem_classes="controls-panel"):
|
| 213 |
+
prompt = gr.Textbox(
|
| 214 |
+
label=english_labels["Prompt"],
|
| 215 |
+
info="Enter the description",
|
| 216 |
+
placeholder="A dog in the park",
|
| 217 |
+
lines=2
|
| 218 |
+
)
|
| 219 |
+
with gr.Row():
|
| 220 |
+
with gr.Column(scale=1):
|
| 221 |
+
concept_1 = gr.Textbox(
|
| 222 |
+
label=english_labels["1st direction to steer"],
|
| 223 |
+
info="Initial state",
|
| 224 |
+
placeholder="Fresh"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
)
|
| 226 |
+
with gr.Column(scale=1):
|
| 227 |
+
concept_2 = gr.Textbox(
|
| 228 |
+
label=english_labels["2nd direction to steer"],
|
| 229 |
+
info="Final state",
|
| 230 |
+
placeholder="Rotten"
|
| 231 |
+
)
|
| 232 |
+
with gr.Row(elem_classes="slider-container"):
|
| 233 |
+
x = gr.Slider(
|
| 234 |
+
minimum=0,
|
| 235 |
+
value=1.75,
|
| 236 |
+
step=0.1,
|
| 237 |
+
maximum=4.0,
|
| 238 |
+
label=english_labels["Strength"],
|
| 239 |
+
info="Maximum strength for each direction (above 2.5 may be unstable)"
|
| 240 |
+
)
|
| 241 |
+
submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary")
|
| 242 |
+
with gr.Accordion(label=english_labels["Advanced options"], open=False, elem_classes="advanced-panel"):
|
| 243 |
+
with gr.Row():
|
| 244 |
+
with gr.Column(scale=1):
|
| 245 |
+
interm_steps = gr.Slider(
|
| 246 |
+
label=english_labels["Num of intermediate images"],
|
| 247 |
+
minimum=3,
|
| 248 |
+
value=7,
|
| 249 |
+
maximum=65,
|
| 250 |
+
step=2
|
| 251 |
+
)
|
| 252 |
+
with gr.Column(scale=1):
|
| 253 |
+
guidance_scale = gr.Slider(
|
| 254 |
+
label=english_labels["Guidance scale"],
|
| 255 |
+
minimum=0.1,
|
| 256 |
+
maximum=10.0,
|
| 257 |
+
step=0.1,
|
| 258 |
+
value=3.5
|
| 259 |
+
)
|
| 260 |
+
with gr.Row():
|
| 261 |
+
with gr.Column(scale=1):
|
| 262 |
+
iterations = gr.Slider(
|
| 263 |
+
label=english_labels["Num iterations for clip directions"],
|
| 264 |
+
minimum=0,
|
| 265 |
+
value=200,
|
| 266 |
+
maximum=400,
|
| 267 |
+
step=1
|
| 268 |
+
)
|
| 269 |
+
with gr.Column(scale=1):
|
| 270 |
+
steps = gr.Slider(
|
| 271 |
+
label=english_labels["Num inference steps"],
|
| 272 |
+
minimum=1,
|
| 273 |
+
value=3,
|
| 274 |
+
maximum=4,
|
| 275 |
+
step=1
|
| 276 |
+
)
|
| 277 |
+
with gr.Row():
|
| 278 |
+
with gr.Column(scale=1):
|
| 279 |
+
randomize_seed = gr.Checkbox(
|
| 280 |
+
True,
|
| 281 |
+
label=english_labels["Randomize seed"]
|
| 282 |
+
)
|
| 283 |
+
with gr.Column(scale=1):
|
| 284 |
+
seed = gr.Slider(
|
| 285 |
+
minimum=0,
|
| 286 |
+
maximum=MAX_SEED,
|
| 287 |
+
step=1,
|
| 288 |
+
label=english_labels["Seed"],
|
| 289 |
+
interactive=True,
|
| 290 |
+
randomize=True
|
| 291 |
+
)
|
| 292 |
+
# Right Column - Output
|
| 293 |
+
with gr.Column(scale=8):
|
| 294 |
+
with gr.Group(elem_classes="main-panel"):
|
| 295 |
+
gr.Markdown("### Generated Results")
|
| 296 |
+
# Swapped order: Image strip on top, video below (video is larger)
|
| 297 |
+
image_strip = gr.Image(label="Image Strip", type="filepath", elem_id="strip", height=200)
|
| 298 |
+
output_video = gr.Video(label=english_labels["Looping video"], elem_id="video", loop=True, autoplay=True, height=600)
|
| 299 |
+
with gr.Row():
|
| 300 |
+
post_generation_image = gr.Image(
|
| 301 |
+
label=english_labels["Generated Images"],
|
| 302 |
+
type="filepath",
|
| 303 |
+
elem_id="interactive",
|
| 304 |
+
elem_classes="image-display"
|
| 305 |
+
)
|
| 306 |
+
post_generation_slider = gr.Slider(
|
| 307 |
+
minimum=-10,
|
| 308 |
+
maximum=10,
|
| 309 |
+
value=0,
|
| 310 |
+
step=1,
|
| 311 |
+
label=english_labels["From 1st to 2nd direction"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
# Examples
|
| 315 |
+
gr.Examples(
|
| 316 |
+
examples=examples,
|
| 317 |
+
inputs=[prompt, concept_1, concept_2, x]
|
| 318 |
+
)
|
| 319 |
|
| 320 |
+
# Event Handlers
|
| 321 |
+
submit.click(
|
| 322 |
+
fn=generate,
|
| 323 |
+
inputs=[
|
| 324 |
+
prompt, concept_1, concept_2, x, randomize_seed, seed,
|
| 325 |
+
recalc_directions, iterations, steps, interm_steps,
|
| 326 |
+
guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images
|
| 327 |
+
],
|
| 328 |
+
outputs=[
|
| 329 |
+
x_concept_1, x_concept_2, avg_diff_x,
|
| 330 |
+
output_video, # video output
|
| 331 |
+
image_strip, # canvas (image strip)
|
| 332 |
+
total_images,
|
| 333 |
+
post_generation_image,
|
| 334 |
+
post_generation_slider,
|
| 335 |
+
seed
|
| 336 |
+
]
|
| 337 |
+
)
|
| 338 |
|
| 339 |
+
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
| 340 |
+
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
| 341 |
+
post_generation_slider.change(
|
| 342 |
+
fn=update_pre_generated_images,
|
| 343 |
+
inputs=[post_generation_slider, total_images],
|
| 344 |
+
outputs=[post_generation_image],
|
| 345 |
+
queue=False,
|
| 346 |
+
show_progress="hidden",
|
| 347 |
+
concurrency_limit=None
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
if __name__ == "__main__":
|
| 351 |
+
# Gradio API ์คํค๋ง๋ฅผ ํ์ํ์ง ์์ผ๋ ค๋ฉด ์๋์ ๊ฐ์ด show_api=False ์ต์
์ ์ฌ์ฉํ ์ ์์ต๋๋ค.
|
| 352 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|