Spaces:
Runtime error
Runtime error
| import spaces | |
| import argparse | |
| import os | |
| import time | |
| from os import path | |
| import shutil | |
| from datetime import datetime | |
| from safetensors.torch import load_file | |
| from huggingface_hub import hf_hub_download | |
| import gradio as gr | |
| import torch | |
| from diffusers import FluxPipeline | |
| from PIL import Image | |
| from transformers import pipeline | |
| import base64 | |
| translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
| # Hugging Face ํ ํฐ ์ค์ | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if HF_TOKEN is None: | |
| raise ValueError("HF_TOKEN environment variable is not set") | |
| # Setup and initialization code | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
| gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # Create gallery directory if it doesn't exist | |
| if not path.exists(gallery_path): | |
| os.makedirs(gallery_path, exist_ok=True) | |
| # ์ํ ์ด๋ฏธ์ง์ ํ๋กฌํํธ ์ ์ | |
| SAMPLE_IMAGES = { | |
| "3d2.webp": "the most famous hero according to Yuri Milner ", | |
| "3d3.webp": "purple nest ", | |
| "3d4.webp": "Timothy's sabbath ", | |
| "3d5.webp": " A schoolboy friend of Juliรกn Carax, fun-loving and loyal ", | |
| "3d6.webp": "Friend of Daniel and his father ", | |
| "3d7.webp": "WHERE ships of purple gently toss On seas of daffodil ", | |
| "3d8.webp": "Beat the drums of tragedy for me, And let the white violins whir thin and slow ", | |
| "3d9.webp": "And let the choir sing a stormy song To drown the rattle of my dying breath. ", | |
| "3d10.webp": "Beat the drums of tragedy and death ", | |
| "3d11.webp": "Beat the drums of tragedy for me. ", | |
| "3d12.webp": "Touching the infinite, else far and untrod, With oracles divine that speak of God. ", | |
| "3d13.webp": "Night, standing on her starry pulpit, free, Utters them in the dread, the silver roll Of spheres, woods, winds and waves, alternately ", | |
| "3d14.webp": "On sermons deep, fit time to feast the soul. ", | |
| "3d15.webp": "The bee is cradled in the bud; and far, Cold glittering lights, the azure curtain, throngโ Planet on beaming planet, star on star. ", | |
| "3d16.webp": "The lark's sweet pipe has ceased its latest song ", | |
| "3d17.webp": "the snake was a roaming dog ", | |
| "3d18.webp": "Antonio Battistella portraying Father of Giulia ", | |
| "3d19.webp": "So straight to her father the brisk young lady went, And said, grant me one favour, do give your consent ", | |
| "3d20.webp": "Before that we are marryโd let me your father see, All fear is, now" miscarryโd, my heart is full of glee ", | |
| "3d21.webp": "My heart you now have gained, you are all I prize, So make yourself contented, pray be satisfied. ", | |
| "3d22.webp": "O pray what is the favour that of me you crave? If it lies in my power you the same shall have ", | |
| "3d23.webp": "Could I but see your father, and my mind reveal, I have both gold and silver, and houses at my will ", | |
| "3d1.webp": "the most famous hero according to Zhou Qi" | |
| } | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| # Model initialization | |
| if not path.exists(cache_path): | |
| os.makedirs(cache_path, exist_ok=True) | |
| # ์ธ์ฆ๋ ๋ชจ๋ธ ๋ก๋ | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.bfloat16, | |
| use_auth_token=HF_TOKEN | |
| ) | |
| # Hyper-SD LoRA ๋ก๋ | |
| pipe.load_lora_weights( | |
| hf_hub_download( | |
| "ByteDance/Hyper-SD", | |
| "Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
| use_auth_token=HF_TOKEN | |
| ) | |
| ) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| def save_image(image): | |
| """Save the generated image and return the path""" | |
| try: | |
| if not os.path.exists(gallery_path): | |
| try: | |
| os.makedirs(gallery_path, exist_ok=True) | |
| except Exception as e: | |
| print(f"Failed to create gallery directory: {str(e)}") | |
| return None | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| random_suffix = os.urandom(4).hex() | |
| filename = f"generated_{timestamp}_{random_suffix}.png" | |
| filepath = os.path.join(gallery_path, filename) | |
| try: | |
| if isinstance(image, Image.Image): | |
| image.save(filepath, "PNG", quality=100) | |
| else: | |
| image = Image.fromarray(image) | |
| image.save(filepath, "PNG", quality=100) | |
| return filepath | |
| except Exception as e: | |
| print(f"Failed to save image: {str(e)}") | |
| return None | |
| except Exception as e: | |
| print(f"Error in save_image: {str(e)}") | |
| return None | |
| def get_random_seed(): | |
| return torch.randint(0, 1000000, (1,)).item() | |
| @spaces.GPU | |
| def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None): | |
| global pipe | |
| if seed is None: | |
| seed = torch.randint(0, 1000000, (1,)).item() | |
| # ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ | |
| def contains_korean(text): | |
| return any(ord('๊ฐ') <= ord(c) <= ord('ํฃ') for c in text) | |
| # ํ๋กฌํํธ ์ ์ฒ๋ฆฌ | |
| if contains_korean(prompt): | |
| translated = translator(prompt)[0]['translation_text'] | |
| prompt = translated | |
| formatted_prompt = f"wbgmsst, 3D, {prompt}, white background" | |
| with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
| try: | |
| generated_image = pipe( | |
| prompt=[formatted_prompt], | |
| generator=torch.Generator().manual_seed(int(seed)), | |
| num_inference_steps=int(steps), | |
| guidance_scale=float(scales), | |
| height=int(height), | |
| width=int(width), | |
| max_sequence_length=256 | |
| ).images[0] | |
| saved_path = save_image(generated_image) | |
| if saved_path is None: | |
| print("Warning: Failed to save generated image") | |
| return generated_image | |
| except Exception as e: | |
| print(f"Error in image generation: {str(e)}") | |
| return None | |
| def update_random_seed(): | |
| """๋ฒํผ์ผ๋ก ๋๋ ์ ๋ ์๋ก์ด ์๋๋ฅผ ์ ๋ฐ์ดํธ""" | |
| return gr.update(value=get_random_seed()) | |
| # Gradio ์ธํฐํ์ด์ค | |
| with gr.Blocks( | |
| theme=gr.themes.Soft(), | |
| css=""" | |
| .container { | |
| background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a); | |
| border-radius: 20px; | |
| padding: 20px; | |
| } | |
| .generate-btn { | |
| background: linear-gradient(45deg, #2196F3, #00BCD4); | |
| border: none; | |
| color: white; | |
| font-weight: bold; | |
| border-radius: 10px; | |
| } | |
| .output-image { | |
| border-radius: 15px; | |
| box-shadow: 0 8px 16px rgba(0,0,0,0.2); | |
| } | |
| .fixed-width { | |
| max-width: 1024px; | |
| margin: auto; | |
| } | |
| .gallery-container { | |
| margin-top: 40px; | |
| padding: 20px; | |
| background: #f5f5f5; | |
| border-radius: 15px; | |
| } | |
| .gallery-title { | |
| text-align: center; | |
| margin-bottom: 20px; | |
| color: #333; | |
| font-size: 1.5rem; | |
| } | |
| """ | |
| ) as demo: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;"> | |
| <h1 style="font-size: 2.5rem; color: #2196F3;">3D Style Image Generator</h1> | |
| <p style="font-size: 1.2rem; color: #666;">Create amazing 3D-style images with AI</p> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(elem_classes="container"): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox( | |
| label="Image Description", | |
| placeholder="Describe the 3D image you want to create...", | |
| lines=3 | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=6, | |
| maximum=25, | |
| step=1, | |
| value=8 | |
| ) | |
| scales = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.0, | |
| maximum=5.0, | |
| step=0.1, | |
| value=3.5 | |
| ) | |
| seed = gr.Number( | |
| label="Seed (random by default, set for reproducibility)", | |
| value=get_random_seed(), | |
| precision=0 | |
| ) | |
| randomize_seed = gr.Button("๐ฒ Randomize Seed", elem_classes=["generate-btn"]) | |
| generate_btn = gr.Button( | |
| "โจ Generate Image", | |
| elem_classes=["generate-btn"] | |
| ) | |
| with gr.Column(scale=4, elem_classes=["fixed-width"]): | |
| output = gr.Image( | |
| label="Generated Image", | |
| elem_id="output-image", | |
| elem_classes=["output-image", "fixed-width"], | |
| value="3d.webp" | |
| ) | |
| # Gallery ์น์ | |
| with gr.Row(elem_classes="gallery-container"): | |
| gr.HTML("<h2 class='gallery-title'>Gallery</h2>") | |
| gallery_html = "<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>" | |
| for img_file, prompt_text in SAMPLE_IMAGES.items(): | |
| img_path = os.path.abspath(img_file) # ์ ๋ ๊ฒฝ๋ก๋ก ๋ณํ | |
| if os.path.exists(img_path): | |
| try: | |
| # Base64๋ก ์ด๋ฏธ์ง ์ธ์ฝ๋ฉ | |
| with open(img_path, "rb") as img: | |
| img_data = base64.b64encode(img.read()).decode() | |
| # 3d1.webp ํ์ผ์ด๋ฏ๋ก MIMEํ์ ์ webp | |
| gallery_html += f""" | |
| <div style=' | |
| border: 1px solid #ddd; | |
| border-radius: 10px; | |
| padding: 10px; | |
| background: white; | |
| box-shadow: 0 4px 8px rgba(0,0,0,0.1); | |
| '> | |
| <img src='data:image/webp;base64,{img_data}' | |
| style='width: 100%; | |
| border-radius: 8px; | |
| margin-bottom: 10px;' | |
| > | |
| <p style=' | |
| margin: 5px 0; | |
| font-weight: bold; | |
| color: #333; | |
| padding: 10px; | |
| '>Prompt: {prompt_text}</p> | |
| </div> | |
| """ | |
| except Exception as e: | |
| print(f"Error loading image {img_file}: {str(e)}") | |
| gallery_html += "</div>" | |
| gr.HTML(gallery_html) | |
| # ์ด๋ฒคํธ ํธ๋ค๋ฌ | |
| generate_btn.click( | |
| fn=process_and_save_image, | |
| inputs=[height, width, steps, scales, prompt, seed], # ๋์ ๋๋ฆฌ ๋์ ๋ฆฌ์คํธ ํํ | |
| outputs=output | |
| ) | |
| randomize_seed.click( | |
| fn=update_random_seed, | |
| inputs=None, | |
| outputs=seed | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(allowed_paths=[PERSISTENT_DIR]) | |