fbmc-chronos2 / src /utils /data_loader.py
Evgueni Poloukarov
feat: Day 0 - Initialize FBMC Flow Forecasting MVP
4202f60
"""Data loading utilities for FBMC forecasting project.
Provides convenient functions to load and filter FBMC data files.
"""
import polars as pl
from pathlib import Path
from typing import Optional, List
from datetime import datetime, timedelta
class FBMCDataLoader:
"""Load and filter FBMC data with convenient methods."""
def __init__(self, data_dir: Path = Path("data/raw")):
"""Initialize data loader.
Args:
data_dir: Directory containing Parquet files (default: data/raw)
"""
self.data_dir = Path(data_dir)
if not self.data_dir.exists():
raise FileNotFoundError(f"Data directory not found: {data_dir}")
def load_cnecs(
self,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
borders: Optional[List[str]] = None
) -> pl.DataFrame:
"""Load CNEC data with optional filtering.
Args:
start_date: Start date (ISO format: 'YYYY-MM-DD')
end_date: End date (ISO format: 'YYYY-MM-DD')
borders: List of border codes to filter (e.g., ['DE_NL', 'DE_FR'])
Returns:
Polars DataFrame with CNEC data
"""
file_path = self.data_dir / "cnecs_2024_2025.parquet"
if not file_path.exists():
raise FileNotFoundError(f"CNECs file not found: {file_path}")
cnecs = pl.read_parquet(file_path)
# Apply date filters
if start_date:
cnecs = cnecs.filter(pl.col("timestamp") >= start_date)
if end_date:
cnecs = cnecs.filter(pl.col("timestamp") <= end_date)
# Apply border filter
if borders:
cnecs = cnecs.filter(pl.col("border").is_in(borders))
return cnecs
def load_weather(
self,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
grid_points: Optional[List[str]] = None
) -> pl.DataFrame:
"""Load weather data with optional filtering.
Args:
start_date: Start date (ISO format: 'YYYY-MM-DD')
end_date: End date (ISO format: 'YYYY-MM-DD')
grid_points: List of grid point IDs to filter
Returns:
Polars DataFrame with weather data
"""
file_path = self.data_dir / "weather_2024_2025.parquet"
if not file_path.exists():
raise FileNotFoundError(f"Weather file not found: {file_path}")
weather = pl.read_parquet(file_path)
# Apply date filters
if start_date:
weather = weather.filter(pl.col("timestamp") >= start_date)
if end_date:
weather = weather.filter(pl.col("timestamp") <= end_date)
# Apply grid point filter
if grid_points:
weather = weather.filter(pl.col("grid_point").is_in(grid_points))
return weather
def load_entsoe(
self,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
zones: Optional[List[str]] = None
) -> pl.DataFrame:
"""Load ENTSO-E data with optional filtering.
Args:
start_date: Start date (ISO format: 'YYYY-MM-DD')
end_date: End date (ISO format: 'YYYY-MM-DD')
zones: List of bidding zone codes (e.g., ['DE_LU', 'FR', 'NL'])
Returns:
Polars DataFrame with ENTSO-E data
"""
file_path = self.data_dir / "entsoe_2024_2025.parquet"
if not file_path.exists():
raise FileNotFoundError(f"ENTSO-E file not found: {file_path}")
entsoe = pl.read_parquet(file_path)
# Apply date filters
if start_date:
entsoe = entsoe.filter(pl.col("timestamp") >= start_date)
if end_date:
entsoe = entsoe.filter(pl.col("timestamp") <= end_date)
# Apply zone filter
if zones:
entsoe = entsoe.filter(pl.col("zone").is_in(zones))
return entsoe
def get_date_range(self) -> dict:
"""Get available date range from all datasets.
Returns:
Dictionary with min/max dates for each dataset
"""
date_ranges = {}
try:
cnecs = pl.read_parquet(self.data_dir / "cnecs_2024_2025.parquet")
date_ranges['cnecs'] = {
'min': cnecs['timestamp'].min(),
'max': cnecs['timestamp'].max()
}
except Exception:
date_ranges['cnecs'] = None
try:
weather = pl.read_parquet(self.data_dir / "weather_2024_2025.parquet")
date_ranges['weather'] = {
'min': weather['timestamp'].min(),
'max': weather['timestamp'].max()
}
except Exception:
date_ranges['weather'] = None
try:
entsoe = pl.read_parquet(self.data_dir / "entsoe_2024_2025.parquet")
date_ranges['entsoe'] = {
'min': entsoe['timestamp'].min(),
'max': entsoe['timestamp'].max()
}
except Exception:
date_ranges['entsoe'] = None
return date_ranges
def validate_data_completeness(
self,
start_date: str,
end_date: str,
max_missing_pct: float = 5.0
) -> dict:
"""Validate data completeness for a given date range.
Args:
start_date: Start date (ISO format)
end_date: End date (ISO format)
max_missing_pct: Maximum acceptable missing data percentage
Returns:
Dictionary with validation results for each dataset
"""
results = {}
# Calculate expected number of hours
start_dt = datetime.fromisoformat(start_date)
end_dt = datetime.fromisoformat(end_date)
expected_hours = int((end_dt - start_dt).total_seconds() / 3600)
# Validate CNECs
try:
cnecs = self.load_cnecs(start_date, end_date)
actual_hours = cnecs.select(pl.col("timestamp").n_unique()).item()
missing_pct = (1 - actual_hours / expected_hours) * 100
results['cnecs'] = {
'expected_hours': expected_hours,
'actual_hours': actual_hours,
'missing_pct': missing_pct,
'valid': missing_pct <= max_missing_pct
}
except Exception as e:
results['cnecs'] = {'error': str(e), 'valid': False}
# Validate weather
try:
weather = self.load_weather(start_date, end_date)
actual_hours = weather.select(pl.col("timestamp").n_unique()).item()
missing_pct = (1 - actual_hours / expected_hours) * 100
results['weather'] = {
'expected_hours': expected_hours,
'actual_hours': actual_hours,
'missing_pct': missing_pct,
'valid': missing_pct <= max_missing_pct
}
except Exception as e:
results['weather'] = {'error': str(e), 'valid': False}
# Validate ENTSO-E
try:
entsoe = self.load_entsoe(start_date, end_date)
actual_hours = entsoe.select(pl.col("timestamp").n_unique()).item()
missing_pct = (1 - actual_hours / expected_hours) * 100
results['entsoe'] = {
'expected_hours': expected_hours,
'actual_hours': actual_hours,
'missing_pct': missing_pct,
'valid': missing_pct <= max_missing_pct
}
except Exception as e:
results['entsoe'] = {'error': str(e), 'valid': False}
return results
# Example usage
if __name__ == "__main__":
# Initialize loader
loader = FBMCDataLoader(data_dir=Path("data/raw"))
# Check available date ranges
print("Available date ranges:")
date_ranges = loader.get_date_range()
for dataset, ranges in date_ranges.items():
if ranges:
print(f" {dataset}: {ranges['min']} to {ranges['max']}")
else:
print(f" {dataset}: Not available")
# Load specific data
# cnecs = loader.load_cnecs(start_date="2024-10-01", end_date="2024-10-31")
# weather = loader.load_weather(start_date="2024-10-01", end_date="2024-10-31")