Spaces:
Sleeping
Sleeping
File size: 8,525 Bytes
d4939ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
"""
CNEC Border Extraction Utility
================================
Extracts commercial border information from CNEC EIC codes, TSO fields,
and PTDF profiles using a hierarchical approach.
Strategy:
1. Parse EIC codes (10T-XX-YY-NNNNNN format) - Primary, 33% coverage
2. Special case mapping (Alegro CNECs) - 8 CNECs
3. TSO + neighbor PTDF analysis - Fallback, ~67% coverage
4. Manual review for remaining cases
Author: Claude + Evgueni Poloukarov
Date: 2025-11-08
"""
from typing import Dict, Optional
# TSO to Country/Zone Mapping
TSO_TO_ZONE: Dict[str, str] = {
# Germany (4 TSOs)
'50Hertz': 'DE',
'Amprion': 'DE',
'TennetGmbh': 'DE',
'TransnetBw': 'DE',
# Other countries
'Rte': 'FR', # France
'Elia': 'BE', # Belgium
'TennetBv': 'NL', # Netherlands
'Apg': 'AT', # Austria
'Ceps': 'CZ', # Czech Republic
'Pse': 'PL', # Poland
'Mavir': 'HU', # Hungary
'Seps': 'SK', # Slovakia
'Transelectrica': 'RO', # Romania
'Hops': 'HR', # Croatia
'Eles': 'SI', # Slovenia
}
# FBMC Border Neighbors (from ENTSO-E BORDERS list)
ZONE_NEIGHBORS: Dict[str, list] = {
'DE': ['NL', 'FR', 'BE', 'AT', 'CZ', 'PL'], # DE_LU treated as DE
'FR': ['DE', 'BE', 'ES', 'CH'], # ES/CH external but affect FBMC
'AT': ['DE', 'CZ', 'HU', 'SI', 'CH'],
'CZ': ['DE', 'AT', 'SK', 'PL'],
'HU': ['AT', 'SK', 'RO', 'HR'],
'SK': ['CZ', 'HU', 'PL'],
'PL': ['DE', 'CZ', 'SK'],
'RO': ['HU'],
'HR': ['HU', 'SI'],
'SI': ['AT', 'HR'],
'BE': ['DE', 'FR', 'NL'],
'NL': ['DE', 'BE'],
}
# Special case mappings (Alegro cable + edge cases)
SPECIAL_BORDER_MAPPING: Dict[str, str] = {
# Alegro DC cable (Belgium - Germany)
'ALEGRO_EXTERNAL_BE_IMPORT': 'BE_DE',
'ALEGRO_EXTERNAL_DE_EXPORT': 'BE_DE',
'ALEGRO_EXTERNAL_DE_IMPORT': 'BE_DE',
'ALEGRO_EXTERNAL_BE_EXPORT': 'BE_DE',
'ALEGRO_INTERNAL_DE_IMPORT': 'BE_DE',
'ALEGRO_INTERNAL_BE_EXPORT': 'BE_DE',
'ALEGRO_INTERNAL_BE_IMPORT': 'BE_DE',
'ALEGRO_INTERNAL_DE_EXPORT': 'BE_DE',
}
def extract_border_from_eic(eic: str) -> Optional[str]:
"""
Extract border from EIC code with 10T-XX-YY-NNNNNN format.
This is the most reliable method as border is explicitly encoded.
Args:
eic: CNEC EIC code
Returns:
Border string (e.g., "DE_FR", "AT_SI") or None if not parseable
Examples:
>>> extract_border_from_eic("10T-DE-FR-000068")
"DE_FR"
>>> extract_border_from_eic("10T-AT-SI-00003P")
"AT_SI"
>>> extract_border_from_eic("17T0000000215642")
None
"""
if not eic.startswith('10T-'):
return None
parts = eic.split('-')
if len(parts) < 3:
return None
zone1, zone2 = parts[1], parts[2]
# Normalize to alphabetical order for consistency
border = f"{min(zone1, zone2)}_{max(zone1, zone2)}"
return border
def get_special_border(eic: str) -> Optional[str]:
"""
Get border for special case CNECs (Alegro cable, etc.).
Args:
eic: CNEC EIC code
Returns:
Border string or None if not a special case
"""
return SPECIAL_BORDER_MAPPING.get(eic)
def infer_border_from_tso_and_ptdf(
tso: str,
ptdf_dict: Dict[str, float]
) -> Optional[str]:
"""
Infer border using TSO home zone + highest PTDF in neighbor zones.
This is a fallback method when EIC doesn't encode border explicitly.
Uses TSO to identify home country, then finds neighbor with highest
|PTDF| value.
Args:
tso: TSO name (e.g., "Apg", "Rte", "Amprion")
ptdf_dict: Dictionary of PTDF values
Format: {"ptdf_AT": -0.45, "ptdf_DE": 0.12, ...}
Returns:
Border string or None if cannot be determined
Example:
>>> ptdfs = {"ptdf_AT": -0.45, "ptdf_SI": 0.38, "ptdf_DE": 0.12}
>>> infer_border_from_tso_and_ptdf("Apg", ptdfs)
"AT_SI" # Apg is Austrian TSO, SI has highest |PTDF| among neighbors
"""
home_zone = TSO_TO_ZONE.get(tso)
if not home_zone:
return None
neighbors = ZONE_NEIGHBORS.get(home_zone, [])
if not neighbors:
return None
# Find neighbor with highest |PTDF|
neighbor_ptdfs = {}
for neighbor in neighbors:
ptdf_key = f'ptdf_{neighbor}'
if ptdf_key in ptdf_dict:
neighbor_ptdfs[neighbor] = abs(ptdf_dict[ptdf_key])
if not neighbor_ptdfs:
return None
# Get neighbor with maximum absolute PTDF
max_neighbor = max(neighbor_ptdfs, key=neighbor_ptdfs.get)
# Normalize border to alphabetical order
border = f"{min(home_zone, max_neighbor)}_{max(home_zone, max_neighbor)}"
return border
def extract_cnec_border(
cnec_eic: str,
tso: str,
ptdf_dict: Optional[Dict[str, float]] = None
) -> str:
"""
Extract border for a CNEC using hierarchical strategy.
Tries methods in order:
1. Parse EIC (10T-XX-YY format) - most reliable
2. Special case mapping (Alegro, etc.)
3. TSO + neighbor PTDF analysis - fallback
4. Return "UNKNOWN" if all methods fail
Args:
cnec_eic: CNEC EIC code
tso: TSO name
ptdf_dict: Optional dictionary of PTDF values
Format: {"ptdf_AT": -0.45, "ptdf_BE": 0.12, ...}
Returns:
Border string (e.g., "DE_FR", "AT_SI") or "UNKNOWN"
Examples:
>>> extract_cnec_border("10T-DE-FR-000068", "Amprion")
"DE_FR"
>>> extract_cnec_border("ALEGRO_EXTERNAL_BE_IMPORT", "Elia")
"BE_DE"
>>> ptdfs = {"ptdf_AT": -0.45, "ptdf_SI": 0.38}
>>> extract_cnec_border("17T0000000215642", "Apg", ptdfs)
"AT_SI"
"""
# Method 1: Parse EIC for 10T- pattern
border = extract_border_from_eic(cnec_eic)
if border:
return border
# Method 2: Special cases (Alegro)
border = get_special_border(cnec_eic)
if border:
return border
# Method 3: TSO + PTDF neighbor analysis
if ptdf_dict:
border = infer_border_from_tso_and_ptdf(tso, ptdf_dict)
if border:
return border
# Method 4: TSO-only fallback (use first alphabetical neighbor)
# This is very approximate but better than UNKNOWN
home_zone = TSO_TO_ZONE.get(tso)
if home_zone:
neighbors = ZONE_NEIGHBORS.get(home_zone, [])
if neighbors:
# Use first alphabetical neighbor as guess
first_neighbor = sorted(neighbors)[0]
border = f"{min(home_zone, first_neighbor)}_{max(home_zone, first_neighbor)}"
return border
return "UNKNOWN"
def validate_border_assignment(
border: str,
ptdf_dict: Dict[str, float],
threshold: float = 0.05
) -> bool:
"""
Validate border assignment using PTDF sanity check.
For a border XX_YY, at least one of ptdf_XX or ptdf_YY should have
significant magnitude (|PTDF| > threshold).
Args:
border: Assigned border (e.g., "DE_FR")
ptdf_dict: Dictionary of PTDF values
threshold: Minimum |PTDF| to consider significant (default 0.05)
Returns:
True if validation passes, False otherwise
Example:
>>> validate_border_assignment("DE_FR", {"ptdf_DE": -0.42, "ptdf_FR": 0.38})
True
>>> validate_border_assignment("DE_FR", {"ptdf_DE": 0.01, "ptdf_FR": 0.02})
False
"""
if border == "UNKNOWN":
return False
zones = border.split('_')
if len(zones) != 2:
return False
zone1, zone2 = zones
ptdf1 = abs(ptdf_dict.get(f'ptdf_{zone1}', 0.0))
ptdf2 = abs(ptdf_dict.get(f'ptdf_{zone2}', 0.0))
# At least one zone should have significant PTDF
return (ptdf1 > threshold) or (ptdf2 > threshold)
def get_border_statistics(borders: list) -> Dict[str, int]:
"""
Get frequency statistics for border assignments.
Useful for validating that major FBMC borders are well-represented.
Args:
borders: List of border assignments
Returns:
Dictionary mapping border → count
Example:
>>> get_border_statistics(["DE_FR", "AT_SI", "DE_FR", "UNKNOWN"])
{"DE_FR": 2, "AT_SI": 1, "UNKNOWN": 1}
"""
stats = {}
for border in borders:
stats[border] = stats.get(border, 0) + 1
# Sort by count (descending)
return dict(sorted(stats.items(), key=lambda x: x[1], reverse=True))
|